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ylphosphanyl)-1,1"-binaphthyl; see: R. Noyori, H. Takaya, Acc. Chem.
Res. 1990, 23, 345. DIPAMP = 1,2-ethanediylbis[ (o-methoxyphenyl)-
phenylphosphane]; see: B. D. Vineyard, W. S. Knowles, M. J. Sabacky,
G. L. Bachman, D. J. Weinkauff, J. Am. Chem. Soc. 1977,
99, 5946. PHANEPHOS = 4,12-bis(diphenylphosphan-
yl)-[2,2]-paracyclophane; see: P.J. Pye, K. Rossen,
R. A. Reamer, N.N. Tsou, R. P. Volante, P.J. Reider,
J. Am. Chem. Soc. 1997, 119, 6207. BPPM = N-(tert-
butoxycarbonyl)-4-(diphenylphosphanyl)-2-[ (diphenyl-
phosphanyl)-methyl|pyrrolidine; see: K. Achiwa, J.
Am. Chem. Soc. 1976, 98, 8265.

a) M. C. Fournie-Zaluski, A. Coulad, R. Bouboutou, P.
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Roques, J. Med. Chem. 1985, 28, 1158; b) W. M. Moore,
C. A. Spilburg, Biochem. Biophys. Res. Commun. 1986,
136, 390; c¢) B. Wirz, T. Weisbrod, H. Estermann, Chim.
Oggi 1996, 37; d) M. Whittaker, C. D. Floyd, P. Brown,
A.J. H. Gearing, Chem. Rev. 1999, 99, 2735.

The FerroTANE ligands and rhodium catalysts are |
available for both research and commercial use through
Chirotech Technology Ltd.
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The preeminent cyanometalate is Prussian Blue. Prussian
Blue and its many analogues feature cubic or incomplete
cubic arrays of metals linked by u-CN units.I" 2l The Prussian
Blue motif is the basis of a new generation of high T,
magnets,”* 4l molecular bowls and boxesl™® with novel ion-
binding properties,”! and unusual coordination polymers.[®
Isoelectronic analogies between [L,Fe"CN] and [L,Mo’CN]
suggest that it should be possible to prepare families of cages
based on Prussian Blue employing cyano derivatives of the
Group 6 metal —carbonyl complexes [M(CO),].1) Relevant to
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this plan is the well-recognized ability of cyanide to accom-
odate high negative charge, for example [Ni(CN),]*.[ 11
We have examined the reaction of (Et,N)CN in MeCN with
[Mo(Mes)(CO);] (1, Mes = mesitylene = 1,3,5-Me;C,H;), the
latter serving as a convenient source of [Mo(CO);-
(MeCN);]."M When solutions of 1 and (Et,N)CN in MeCN
are combined in a 6:9 ratio in the presence of KPF, one
obtains (Et,N){K C [Mog(u-CN)o(CO) 5]} (2) as yellow micro-
crystals in quantitative yield (Scheme 1). Crystallographic
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Scheme 1. Synthesis of 2—4.

analysis reveals that 2 consists of a trigonal-prismatic
Moy(CN), cage with idealized D5, symmetry (Figure 1). Eight
Et,N* ions are evident in the asymmetric unit. At the center of
the cage lies a potassium cation. The potassium is formally 18-
coordinate, but the K --- C/N bonding is ionic. The potassium
atom is 3.37 and 3.20 A from the C/N atoms of the triangular
and square faces, respectively. The Mo centers are octahedral
with all OC-Mo-CO angles of about 84° and C/N-Mo-CO of
about 96°. The average C/N-Mo-C/N angle within the square
faces is 85°, and within the triangular faces it is 80°. The ring
strain associated with the 60° Mo ---Mo--- Mo angles is also
responsible for the acute Mo-C-N/Mo-N-C angles of 169°
observed for the triangluar faces (versus 178° for the square
faces). Because of disorder between the C and N sites, the
Mo—C/N distance of 2.23 A represents an average of
Mo—N(C) and Mo—C(N) distances. In similar compounds,
the (CO);Mo"—[u-NC], distance is about 2.2 A.[) This implies
that Mo—CN and Mo—NC distances are similar, especially in
view of the small thermal parameters for C/N atoms. The Cs*
analogue of 2 was also crystallographically characterized,
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Figure 1. Structure of the anion in 2, with thermal ellipsoids drawn at the
50% probability level. Selected average bond lengths [A] and angles [°]:
Mo-CN/NC (triangle) 2.24, Mo-CN/NC (square) 2.23, Mo-CO 1.95, C-N
1.17, C-O 1.19, K-C/N (triangle) 3.37, K-C/N (square) 3.20, Mo---Mo
(within triangular faces) 5.56, Mo --- Mo (between triangular faces) 5.63; C/
N-Mo-C/N (triangle) 80, C/N-Mo-C/N (square) 85, Mo-C-N/Mo-N-C
(triangle) 169, Mo-C-N/Mo-N-C (square) 178, OC-Mo-CO 84, OC-Mo-
CN 96.

although the refinement suffered from disorder involving the
Et,N* ions.

The C NMR measurements on the Cs* analogue of 2,
prepared from a single crystal that was 1*C-enriched (33 %) at
CN-, revealed a series of seven broad peaks at ¢ =169.0,
170.0, 170.0, 171.5, 172.0, 173.0, and 174.0 in the u-CN
region.['”l The occurrence of several CN signals reflects the
structural complexity of 2, which exists as a mixture of
isostructural linkage isomers. In fact, when only the local
environment about each Mo center in 2 is considered, there
are seven different CN coordination sites (Scheme 2).

MoN= MoN= Mo C MoC=
[N, | C I'N, | C
c C C N c C C
I Mo I Mo Il Mo I Mo
N X N X N X N .
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Scheme 2. Coordination sites for CN units in 2. The relevant C atom is
always shown in boldface.

While solutions of 1 react rapidly with (Et,N)CN at all
stoichiometries—the reaction with more than 3 equiv pro-
vides (Et,N);[Mo(CO);(CN);] (3, Scheme 1)—we obtained a
spectroscopically pure material only for the 1:1 reaction (in
the absence of alkali metal templating ions!). This 1:1 product
is the square (Et,N),[Mo,(u-CN),(CO);;(MeCN),] (4). In 4,
the four MeCN ligands are disposed on the same side of the
ring, which is unusual (Figure 2). The packing diagram shows
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Figure 2. Structure of the anion in 4, with thermal ellipsoids drawn at the
50% probability level. Selected average bond lengths [A] and angles [°]:
Mo-C/N 2.24, Mo-CO 1.94, Mo-NCMe 2.26, C-N 1.15, C-O 1.17, Mo ---Mo
5.62; C/N-Mo-C/N 86, C/N-Mo-NCMe 85, Mo-C-N 177, Mo-N-CMe 176.

that the squares pack as dimers, such that one NCMe group of
one square inserts into the (MeCN),Mo,(CN), “nest” of a
partner square (Figure 3). We propose the “all-up” isomer is
stabilized by this nesting interaction. With its preorganized

Figure 3. Packing of two anions in 4, with thermal ellipsoids drawn at the
50% probability level. The distance between the two parallel Mo,(u-CN),
planes is 7.10 A, and the Mo-NC-Me distance is 4.86 A.

square subunit, 4 is a probable precursor to 2. The four MeCN
ligands in 4 are tilted towards the interior of the square, which
will favor the formation of triangular faces; other M-CN
triangles are known.!3-13]

In summary, this work establishes a new cage geometry, the
trigonal prism, and a novel coordination environment for
potassium. More generally, these results demonstrate that
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classical metal —carbonyl complexes are promising precursors
to cyanometalate cages.

Experimental Section

2: A solution of KPF, (13mg, 0.071 mmol), (Et,N)CN (100 mg,
0.641 mmol), and 1 (128 mg, 0.427 mmol)!'®l in MeCN (10 mL) was stirred
at room temperature for 1 h. The solvent was reduced to about 5 mL, and
Et,0 (15 mL) was added to precipitate yellow microcrystals; yield: 149 mg
(88%). IR (KBr): #c—x = 2094, 2085, 1998, 1934, 1881, 1756 cm™'; elemental
analysis caled for CoH;s\KMogN ;05 (found): C 45.63 (44.14), H 6.73
(7.21), N 9.94 (10.33), Mo 24.03 (23.63), K 1.63 (1.45). The low carbon
microanalysis is attributed to the formation of refractory KMo,C phases, as
indicated by elemental analysis and thermogravimetric analysis (TGA).
The Cs* analogue of 2 was prepared similarly. Crystals of 2 were grown
from MeCN/Et,0.

3: A suspension of 1 (100 mg, 0.333 mmol) and (Et,N)CN (156 mg,
1.00 mmol) in MeCN (20 mL) was heated at reflux for 3 h. The solvent was
reduced to about 5mL, and Et,O (30 mL) was added to precipitate the
colorless product, which was washed with Et,O; yield: 196 mg (91 %). IR
(KBr): #ic—x =2093, 2067, 1935, 1879, 1763 cm™!; IR (MeCN): 7c—x = 2086,
1884, 1870, 1760 cm™'; IR (CD,ClL,): o= =2076, 2066, 1867, 1740 cm™';
3C NMR (C-labeled (33 %) sample, 100 MHz, CD,Cl,): 6 =163.45 (s);
elemental analysis calcd for C;yHgMoN4O; (found): C 51.27 (50.92), H 9.47
(9.20), N 11.96 (12.23), Mo 14.79 (15.00). The K+ salt of [Mo(CO);(CN);]*~
has been previously described by Hieber et al.l'7]

4: A solution of (Et,N)CN (52 mg, 0.333 mmol) and 1 (100 mg, 0.333 mol)
in MeCN (15 mL) was stirred for 4 h. Filtration followed by addition of
Et,0 (25mL) to the golden solution gave a white powder, which was
washed with Et,O; yield: 90 mg (72%). IR (MeCN): #— =2290, 2100,
1902, 1888, 1772 cm™'; elemental analysis caled for CsgHoMoyN;,O
(found): C 44.04 (44.12), H 6.20 (6.07), N 11.01 (11.05).

Crystals of 2 and 4, mounted on glass fibers using Paratone-N (Exxon),
were analyzed on a Siemens Platform/CCD automated diffractometer at
198 K. The data were processed with SHELXTL. The structures were
solved using direct methods and refined using full-matrix least squares on
F? with the program SHELXL-93. Hydrogen atoms were fixed in idealized
positions with thermal parameters 1.5 x those of the attached carbon
atoms. Data were corrected for absorption on the basis of ¥ scans.

Crystal data for 2 (CgH,¢,N,,0,sM0ogK): M, =2543.19, monoclinic, space
group P2/c, a=14.8474(9), b=28.8113(18), c=276760(17) A, B=
91.157(2)°, V=11836.6(13) A3, Z =4, p.yeq = 1.427 Mgm~3, F(000) = 5268,
1408 parameters; R; =0.0664, R,,=0.1277, GOF =0.881 for all 20849 data
(I >20(I)); max./min. residual electron density 1.050/ — 0.680 e~ A3

Crystal data for 4 (CgH,; (N 3s0,Mo,): M, =1755.50, triclinic, space group
P1, a=16.0533(6), b=16.3657(7), c=19.9581(8) A, a=67.8040(10), f=
68.2200(10),y = 67.7400(10)°, V =4331.2(3) A3, Z=2, peyea = 1.346 Mgm3,
F(000) =1816, 991 parameters; R, =0.0415, R, =0.0929, GOF =0.841 for
all 19722 data (I>20(I)); max./min. residual electron density 0.706/ —
0.433e A3,

Crystallographic data (excluding structure factors) for the structures
reported in this paper have been deposited with the Cambridge Crystallo-
graphic Data Centre as supplementary publication no. CCDC-133912 (2),
-137914 (the Cs* analogue of 2), -133859 (3), and -137913 (4). Copies of the
data can be obtained free of charge on application to CCDC, 12 Union
Road, Cambridge CB21EZ, UK (fax: (+44)1223-336-033; e-mail: deposit
@ccdc.cam.ac.uk).
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