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Oligonucleotides and oligonucleotide conjugates 
DNA oligonucleotides and oligonucleotide conjugates were obtained from Integrated DNA 

Technologies (Coralville, IA) or prepared by solid-phase synthesis on an ABI 394 instrument using 
reagents from Glen Research. All oligonucleotides and conjugates were purified by 7 M urea denaturing 
PAGE with running buffer 1 TBE (89 mM each Tris and boric acid and 2 mM EDTA, pH 8.3), extracted 
from the polyacrylamide with TEN buffer (10 mM Tris, pH 8.0, 1 mM EDTA, 300 mM NaCl), and 
precipitated with ethanol as described previously.1 See final sections of the supporting information for all 
solid-phase and small-molecule synthesis procedures. 

 
In vitro selection procedure 

The selection procedure, cloning, and initial analysis of individual clones were performed essentially 
as described previously,1a,2 but with a different ligation step3 and with a new capture step based on DMT-
MM–promoted amide bond formation. An overview of the key selection and capture steps of each round 
is shown in Figure 1. A depiction of the capture step with nucleotide details and validation data is shown 
in Figure S1. The random deoxyribozyme pool was 5-CGAAGCGCTAGAACAT-Nx-AGTACATGAGACTTAGCT-
GATCCTGATGG-3 (x = 20, 30, or 40). For a reselection experiment the pool was partially (25%) 
randomized, prepared using phosphoramidite mixtures as described previously.4 PCR primers were 
5-CGAAGCGCTAGAACAT-3 (forward primer) and 5-(AAC)4XCCATCAGGATCAGCTAAGTCTCATGTACT-3, 
where X is the HEG spacer to stop Taq polymerase (reverse primer). In each round, the ligation step to 
attach the deoxyribozyme pool at its 3-end with the 5-end of the carbonyl-based substrate conjugate was 
performed using a DNA splint and T4 DNA ligase. The splint sequence was 5-AAGTACATGAGACTTTTCC-
ATCAGGATCAGCTAAGTCTCATGTACT-3, where the underlined T is included to account for the untemplated 
A nucleotide that is added at the 3-end of each PCR product by Taq polymerase. This T nucleotide was 
omitted from the splint used for ligation of the initially random Nx pool, which was prepared by solid-
phase synthesis without the untemplated A. Nucleotide sequences of the DNA anchor oligonucleotide, the 
deoxyribozyme binding arms, the 5-amino modified capture oligonucleotide, and the capture splint are 
shown in Fig. S1. 

 
Procedure for ligation step in round 1. A 25 µL sample containing 1.2 nmol of DNA pool, 900 pmol 

of DNA splint, and 600 pmol of carbonyl-based substrate was annealed in 5 mM Tris, pH 7.5, 15 mM 
NaCl, and 0.1 mM EDTA by heating at 95 °C for 3 min and cooling on ice for 5 min. To this solution was 
added 3 µL of 10 T4 DNA ligase buffer (Fermentas) and 2 µL of 5 U/µL T4 DNA ligase (Fermentas). 
The sample was incubated at 37 °C for 12 h and purified by 8% PAGE. 

 
Procedure for ligation step in subsequent rounds. A 17 µL sample containing the PCR-amplified 

DNA pool (~5–10 pmol), 30 pmol of DNA splint, and 50 pmol of carbonyl-based substrate was annealed 
in 5 mM Tris, pH 7.5, 15 mM NaCl, and 0.1 mM EDTA by heating at 95 °C for 3 min and cooling on ice 
for 5 min. To this solution was added 2 µL of 10 T4 DNA ligase buffer (Fermentas) and 1 µL of 1 U/µL 
T4 DNA ligase (Fermentas). The sample was incubated at 37 °C for 12 h and purified by 8% PAGE. 

 
Procedure for selection step in round 1. Each selection experiment was initiated with 200 pmol of the 

ligated pool. A 20 µL sample containing 200 pmol of ligated pool was annealed in (conditions A) 5 mM 
HEPES, pH 7.5, 15 mM NaCl, and 0.1 mM EDTA or (conditions B) 5 mM CHES, pH 9.0, 15 mM NaCl, 
and 0.1 mM EDTA by heating at 95 °C for 3 min and cooling on ice for 5 min. The selection reaction was 
initiated by bringing the sample to 40 µL total volume containing (conditions A) 70 mM HEPES, pH 7.5, 
1 mM ZnCl2, 20 mM MnCl2, 40 mM MgCl2, and 150 mM NaCl or (conditions B) 50 mM CHES, pH 9.0, 
40 mM MgCl2, and 150 mM NaCl. The Mn2+ was added from a 10 stock solution containing 200 mM 
MnCl2. The Zn2+ was added from a 10 stock solution containing 10 mM ZnCl2, 20 mM HNO3, and 200 
mM HEPES at pH 7.5; this stock solution was freshly prepared from a 100 stock of 100 mM ZnCl2 in 
200 mM HNO3. The metal ion stocks were added last to the final sample. The sample was incubated at 37 
°C for 14 h and precipitated with ethanol. 
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standard reaction was performed in each round using the entirely random pool. The yield of each such 
reaction is plotted as “control” in Figure S3; the position of this capture product was used as a marker for 
excising the appropriate gel bands. 

 
Procedure for PCR in subsequent rounds. In each selection round, two PCR reactions were 

performed, 10-cycle PCR followed by 30-cycle PCR. First, a 100 µL sample was prepared containing the 
PAGE-purified selection product, 200 pmol of forward primer, 50 pmol of reverse primer, 20 nmol of 
each dNTP, and 10 µL of 10 Taq polymerase buffer (1 = 20 mM Tris-HCl, pH 8.8, 10 mM (NH4)2SO4, 
10 mM KCl, 2 mM MgSO4, and 0.1% Triton X-100). This sample was cycled 10 times according to the 
following PCR program: 94 °C for 2 min, 10 (94 °C for 30 s, 47 °C for 30 s, 72 °C for 30 s), 72 °C for 5 
min. Taq polymerase was removed by phenol/chloroform extraction. Second, a 50 µL sample was 
prepared containing 1 µL of the 10-cycle PCR product, 100 pmol of forward primer, 25 pmol of reverse 
primer, 10 nmol of each dNTP, 20 µCi of -32P-dCTP (800 Ci/mmol), and 5 µL of 10 Taq polymerase 
buffer. This sample was cycled 30 times according to the following PCR program: 94 °C for 2 min, 30 
(94 °C for 30 s, 47 °C for 30 s, 72 °C for 30 s), 72 °C for 5 min. Samples were separated by 8% PAGE. 

 
Procedure for cloning and initial screening. From the desired selection round, PCR was performed 

using the same procedure as described above, using primers 5-CGAAGCGCTAGAACAT-3 (forward primer) 
and 5-TAATTAATTAATTACCCATCAGGATCAGCT-3 (reverse primer), where the extensions with TAA stop 
codons in each frame were included to suppress false negatives in blue-white screening.5 The PCR product 
was cloned using a TOPO TA cloning kit (Invitrogen). Initial screening of individual deoxyribozyme 
clones was performed using DNA strands prepared by PCR from miniprep DNA derived from individual 
E. coli colonies. The miniprep DNA samples were first assayed by digestion with EcoRI to ascertain the 
presence of the expected insert. The concentration of each PAGE-purified deoxyribozyme strand was 
estimated from the UV shadowing intensity relative to suitable standards. Each screening assay used ~0.2 
pmol of 5-32P-radiolabeled ester or anilide substrate and ~20 pmol of deoxyribozyme and the single-
turnover assay procedure described in a subsequent section of this document. 
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Single-turnover deoxyribozyme assay procedure 
The ester or anilide substrate was 5-32P-radiolabeled using -32P-ATP and polynucleotide kinase 

(Fermentas). A 10 µL sample containing 0.2 pmol of 5-32P-radiolabeled ester or anilide substrate and 20 
pmol of deoxyribozyme was annealed in (conditions A) 5 mM HEPES, pH 7.5, 15 mM NaCl, and 0.1 mM 
EDTA or (conditions B) 5 mM CHES, pH 9.0, 15 mM NaCl, and 0.1 mM EDTA by heating at 95 °C for 3 
min and cooling on ice for 5 min. The DNA-catalyzed hydrolysis reaction was initiated by bringing the 
sample to 20 µL total volume containing (conditions A) 70 mM HEPES, pH 7.5, 1 mM ZnCl2, 20 mM 
MnCl2, 40 mM MgCl2, and 150 mM NaCl or (conditions B) 50 mM CHES, pH 9.0, 40 mM MgCl2, and 
150 mM NaCl. The sample was incubated at 37 °C. At appropriate time points, 2 µL aliquots were 
quenched with 5 µL stop solution (80% formamide, 1 TBE [89 mM each Tris and boric acid and 2 mM 
EDTA, pH 8.3], 50 mM EDTA, 0.025% bromophenol blue, 0.025% xylene cyanol). Samples were 
separated by 20% PAGE and quantified with a PhosphorImager. Values of kobs were obtained by fitting 
the yield versus time data directly to first-order kinetics; i.e., yield = Y•(1 – e–kt), where k = kobs and Y is the 
final yield. Each kobs value is reported with error calculated as the standard deviation from the indicated 
number of independent determinations. When kobs was sufficiently low such that an exponential fit was not 
meaningful, the initial points were fit to a straight line, and kobs was taken as the slope of the line. 
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Deprotection of N-MMT group (step D1). Deprotection with 3% TCA/CH2Cl2 was performed as 

described above for deprotection of 5′-amino groups (step B). 
 
Coupling of 5′-DMT-3′-CO2H thymidine nucleoside analogue to aniline moiety (step D2). 5′-DMT-3′-

CO2H thymidine nucleoside analogue was coupled to the terminal aniline moiety using the coupling step 
described above (step C1), using the 5′-DMT-3′-CO2H thymidine nucleoside analogue in place of N-
MMT-4-aminobenzoic acid and extending the coupling reaction from 2 h to 18 h. 

 
Capping of unreacted amino groups (step D3). Capping with acetic anhydride was performed as 

described above for capping of unreacted 5′-amino groups (step C2). 
 
Completion of synthesis (steps E and F). The remainder of the conjugate was synthesized on the ABI 

394 instrument using standard procedures. The conjugate was cleaved from the solid support using 500 µL 
of 30% NH4OH by incubating at 55 °C for 16 h. The NH4OH was evaporated, and the final conjugate was 
purified by 20% PAGE. 

 



 

Synthesis
 
Conju

Phe-Ala tr
and N-MM
respective
as describ
carboxylic
was synth
time in ste

 
 
 
 

Synthesis
 

 
Ring-

convergen
This appr
procedure
appropriat
MMT-4-a
conjugates
HPLC, us
solvent A 
7.0). Frac
Residual T

The 
solution-p
37 °C (ani

s of amide-lin

ugate 3 was sy
ripeptide was
MT-Ala in p

ely. The coup
bed for anili
c acid compo

hesized as des
ep D2 was 2 h

s of ring-subs

substituted an
nt approach, u
roach was ad
e for synthes
tely ring-sub

aminobenzoic
s, step F was
sing a Phenom

in solvent B
ctions contain
TEAA was re
3′-CO2H oli

phase couplin
iline) or MOP

Supporting In

nked conjuga

ynthesized as
s incorporated
place of N-M
ling time in s
ide-linked co
und in step C

scribed for an
h instead of 1

stituted analo

nilide analog
using the 3′-C
dopted to co
sis of anilid
stituted N-M
 acid in step 

s then perform
menex Gemin

B over 45 min
ning the 5′-an
emoved by dis
gonucleotide 
g using the p

PS, pH 7.0 at 

nformation for

ates 3, 4, 5, an

s described fo
d via three cy
MMT-4-amino
step D2 was 2
onjugate 2, e
C1. The coupl
nilide-linked c
6 h. 

ogues of anil

ues of 2 as w
CO2H oligon

onserve the s
de-linked con

MMT-4-amino
C1. For the 

med. The 5′-a
ni C18 semi-p
n (A: 50% M
niline/phenol-
ssolving the s

and 5′anili
procedure for 
25 °C (pheno

r Brandsen et

nd 6 

or anilide-link
ycles of steps
obenzoic aci
2 h instead of
except using
ling time in s
conjugate 2, e

lide-linked co

well as the ph
ucleotide from
synthetic 3′-C
njugate 2 w

obenzoic acid
anilide analo

aniline/phenol
prep column (
eCN/50% 20
-terminated o
sample in 100
ine/phenol-ter
ester-linked 

ol). 

t al., J. Am. Ch

ked conjugate
s B and C, us
id in the firs
f 16 h. Conju

g the appropr
step D2 was 2
except omittin

onjugate 2 an

henyl ester a
m the synthe
CO2H thymid

was followed
d or 4-hydrox
ogues only, s
l-terminated o
(250  10 mm

0 mM TEAA,
ligonucleotid

0 L of water 
rminated oli
conjugate 1, 

hem. Soc. 

e 2 with modi
sing N-MMT-
st, second, a
ugates 4 and 5
riate N-MMT
2 h instead of
ng steps B an

nd the pheny

analogue wer
esis of ester-l
dine nucleos

d through ste
xybenzoic ac
step D1 was 
oligonucleoti
m) using a g
, pH 7.0; B: 2
de were poole

and evaporat
igonucleotide
except using

pa

ifications. The
-Ala, N-MMT
and third ste
5 were synth
T-protected a
f 16 h. Conju
nd C. The cou

yl ester analo

 

e synthesized
linked conjug
ide analogue
ep C1, usin
cid in place 
performed. F

ide was purifi
gradient of 15
20 mM TEAA
ed and evapo
ting (3). 

e were joine
g MOPS, pH 

ge S21 

e Ala-
T-Phe, 
p C1, 
esized 
amino 

ugate 6 
upling 

ogue 

d by a 
gate 1. 
e. The 
ng the 

of N-
For all 
fied by 
5–30% 
A, pH 
orated. 

ed by 
7.0 at 



 

Small-mo
 
Reage

solvents w
activated 
noted. Th
indicator 
silica gel 
monometh
containing
Unity 500
(0 ppm) a
ppm), CD
spectra. M
(quartet), 
coupling c
Chemical 

 
 

 
5′-DMT-3
The 5′-TB
reported.10

B accordi
DMTCl to
this route
reported s
 
General p
procedure
procedure
and Et3N (
mmol, 1.0
temperatu
was added
After cool
MeOH (4 
CH2Cl2 (1
The organ
residue w
containing

lecule synthe

ents were co
were obtaine
4Å molecula
in-layer chro
with visualiz
(230-400 me

hoxytrityl (M
g 2% (v/v) tr
0 VXR instrum
and reference

D3OD (3.31 p
Multiplicities 

dd (doublet 
constants (J, 
Sciences mas

3′-CO2H thym
BDPS-3′-CO2

0 Compound A
ing to the pro
o form the 5′-
 were previo
pectra. 

procedure fo
e described he
es, all reagent
(1.6 mL, 11.4
0 equiv) in C

ure 70 °C) for
d, and the so
ling to room 
mL) were ad

150 mL) and 
nic layer was
was purified 
g 2% (v/v) Et

Supporting In

esis 

ommercial gr
d from Aldr
ar sieves ove
matography (

zation by UV
esh). For all 

MMT) group, 
riethylamine. 
ment. The che
d to the resid

ppm) for 1H N
of 1H NMR 
of doublets),
Hz) are repo

ss spectromet

midine nucle
H thymidine 
A was deprot
ocedure repor
-DMT-3′-CO
ously reported

or MMT prot
ere was used 
t amounts wer
4 mmol, 3.8 e
CH2Cl2 (25 
r 2 h. After c

olution was h
temperature,

dded to quenc
washed with
 dried over a
by silica ge
3N. 

nformation for

ade and use
rich Sure/Sea
ernight. All r
(TLC) was p

V light (254 n
compounds t
silica gel co
1H and 13C 

emical shifts 
dual proton s
NMR spectra
spin couplin
or m (multip

orted. Mass s
try laboratory

eoside analog
nucleoside a

tected with TB
rted for the T

O2H thymidine
d;10-11 1H NM

tection of am
for MMT pr

re scaled line
quiv) were ad
mL) at room

cooling to roo
heated at reflu

 the solution 
ch any unreac
h 5% (w/v) aq
anhydrous Mg
el column ch

r Brandsen et

d without pu
al or Acros A
reactions wer
erformed on 

nm). Flash co
that contain t

olumns were 
spectra were 
in parts per m

signal of the 
a; CDCl3 (77
ngs are repor
plet and over
spectrometry 
y using a Wate

gue (C) 
analogue A w
BAF to form 
TBDMS anal
e nucleoside a

MR spectra o

mino acids, 
rotection of 4
early. Portion
dded to a susp

m temperature
om temperatu
ux for 2 h (a

was cooled 
cted MMTCl.
queous citric 
gSO4 and con
hromatograph

t al., J. Am. Ch

urification un
Acroseal bot
re performed
silica gel pla

olumn chrom
the 4,4′-dime
packed with 
recorded on

million (δ) are
deuterated so

7.2 ppm), CD
rted as s (sin
rlapping spin
data were ob

ers Quattro II

was prepared 
m the 3′-CO2H

logue,11 follow
analogue C a
f each comp

including an
4-aminobenzo

ns of TMSCl (
pension of 4-a
e. The mixtu
ure, MMTCl 
aliphatic amin
further in an 
. After 30 mi
 acid (30 mL
ncentrated un

hy, eluting w

hem. Soc. 

nless otherw
ttles or by d
d under argon
ates pre-coate

matography w
ethoxytrityl (D

the initial so
n a Varian Un
e reported do
olvent, as fol

D3OD (49.2 p
nglet), d (dou
n systems). V
btained at th
I instrument (

in six steps 
H thymidine nu

wed by 5′-OH
as reported.11 
pound were c

niline derivat
oic acid; for 
(1.4 mL, 11.0
aminobenzoic
ure was heat
(920 mg, 3.0

nes) or 16 h 
ice bath, and

in, the solutio
L) and saturat
nder reduced 
with 0–4% C

pa

wise indicated
drying over f
n unless othe
ed with fluore

was performed
DMT) group
olvent additio
nity 500 or V

ownfield from
llows: CDCl3

ppm) for 13C 
ublet), t (tripl
Values for app
e UIUC Scho
(LR-ESI). 

 

from thymid
ucleoside ana
H protection 
All compoun

consistent wi

tives. The sp
the other syn
0 mmol, 3.7 e
c acid (413 m
ted at reflux 
0 mmol, 1.0 e
(aromatic am
d Et3N (4 mL
on was diluted
ted NaCl (30
pressure. Th

CH3OH in C

ge S22 

d. Dry 
freshly 
erwise 
escent 
d with 
 or 4-
onally 
Varian 

m TMS 
 (7.26 
NMR 
let), q 
parent 
ool of 

dine as 
alogue 
using 

nds on 
th the 

pecific 
nthesis 
equiv) 

mg, 3.0 
(bath 

equiv) 
mines). 
L) and 
d with 
0 mL). 
he oily 
CH2Cl2 



 

N-MMT-4
Following
(Aldrich),
TLC: Rf =
1H NMR: 
(d, J = 8.8
9H) ppm. 
13C NMR
123.8, 115
MS: m/z c
 

 

4-aminobenz
g the general
 1.19 g (77%

= 0.19 [4% CH
(500 MHz, C

8 Hz, 2H), 6.

R: (125 MHz,
5.1, 113.3, 71
calcd. for C27H

Supporting In

zoic acid trie
 MMT prote
) of product w

H3OH in CH2

CDCl3) δ 7.64
31 (d, J = 8.6

, CDCl3) δ 1
.1, 55.3, 45.0

H22NO3 [M–H

nformation for

thylammoni
ection proced
was isolated a
Cl2 with 2% (

4 (d, J = 8.6 H
6 Hz, 2H), 3.

72.3, 158.4, 
0, 9.4 ppm. 
H]–: 408.2; fou

r Brandsen et

um salt 
dure, from 41
as a white soli
(v/v) Et3N]. 
Hz, 2H), 7.33 
.78 (s, 3H), 2

149.1, 145.6

und: 408.1. 

t al., J. Am. Ch

13 mg (3.0 m
id. 

 (d, J = 7.5 H
2.84 (q, J = 7

6, 137.2, 130

hem. Soc. 

mmol) of 4-a

Hz, 4H), 7.27-
7.2 Hz, 6H), 1

0.5, 130.4, 12

pa

aminobenzoic

-7.19 (m, 8H)
1.18 (t, J = 7

29.2, 128.1, 

ge S23 

c acid 

), 6.79 
.2 Hz, 

127.0, 

 

 



 

N-MMT-A
From 265 
TLC: Rf =
1H NMR: 
7.08 (t, J 
Hz, 6H), 1
13C NMR
53.3, 44.7
MS: m/z c
 

 

Ala-OH•Et3N
mg (3.0 mmo

= 0.35 [4% CH
(500 MHz, C
= 7.0 Hz, 2H

1.12 (d, J = 6.
: (125 MHz, 

7, 22.4, 8.8 pp
calcd. for C23H

Supporting In

N 
ol) of L-alanin
H3OH in CH2

CDCl3) δ 7.51
H), 6.72 (t, J =
.9 Hz, 3H), 1.
CDCl3) δ 180

pm ppm. 
H23NO3 [M+E

nformation for

ne (Acros), 1
Cl2 with 2% (
 (d, J = 8.1 H
= 8.7 Hz, 2H
.07 (t, J = 7.3
0.6, 157.8, 14

Et3NH]+: 463.

r Brandsen et

.10 g (79%) o
(v/v) Et3N]. 

Hz, 4H), 7.39 
H), 3.71 (s, 3H
3 Hz, 9H) ppm
47.4, 139.2, 1

.3; found: 463

t al., J. Am. Ch

of product wa

(d, J = 8.1 Hz
H), 3.15 (q, J
m. 
130.5, 129.1, 

3.3. 

hem. Soc. 

as isolated as 

z, 2H), 7.18 (
J = 6.9 Hz, 1H

127.7, 126.1

pa

a white solid

(t, J = 7.1 Hz,
H), 2.76 (q, J

, 113.0, 71.1,

ge S24 

d. 

 4H), 
J = 7.2 

, 55.3, 

 

 



 

N-MMT-P
From 498
solid. 
TLC: Rf =
1H NMR: 
(t, J = 7.4 
= 6.0 Hz, 
13C NMR
127.9, 127
MS: m/z c
 

 

Phe-OH•Et3N
 mg (3.0 mm

= 0.51 [4% CH
(500 MHz, C
Hz, 2H), 7.1
1H), 2.80 (dd

R: (125 MHz,
7.7, 126.1, 12
calcd. for C29H

Supporting In

N 
mol) of L-phen

H3OH in CH2

CDCl3) δ 7.48
8-7.14 (m, 5H

d, J = 13.2, 6.
, CDCl3) δ 1

26.0, 112.9, 70
H26NO3 [M–H

nformation for

nylalanine (A

Cl2 with 2% (
8-7.44 (m, 4H
H), 7.10-7.07
0 Hz, 1H), 2.
78.7, 157.8, 
0.9, 59.1, 55.2
H]–: 436.1; fou

r Brandsen et

Aldrich), 1.37

(v/v) Et3N]. 
H), 7.35 (d, J =
7 (m, 2H), 6.7
72 (q, J = 7.3
147.3, 147.1

2, 44.7, 42.0, 
und: 436.2. 

t al., J. Am. Ch

7 g (85%) of p

= 8.9 Hz, 2H
71 (d, J = 8.9 
3 Hz, 6H), 1.0
1, 139.4, 139
 8.7 ppm. 

hem. Soc. 

product was 

H), 7.27 (d, J =
Hz, 2H), 3.7

04 (t, J = 7.3 H
9.0, 130.5, 13

pa

isolated as a 

= 7.9 Hz, 2H)
3 (s, 3H), 3.4
Hz, 9H) ppm
30.3, 129.1, 

ge S25 

white 

), 7.23 
47 (t, J 
. 
129.0, 

 

 



 

N-MMT-4
From 150
isolated as
TLC: Rf =
1H NMR: 
7.42 (d, J 
(s, 3H), 3.
13C NMR
127.4, 126
MS: m/z c
 

 

4-(aminomet
0 mg (1.0 m
s a white solid

= 0.24 [4% CH
(500 MHz, C

J = 8.2 Hz, 2H
.36 (s, 2H), 3.

R: (125 MHz,
6.4, 113.4, 70
calcd. for C28H

Supporting In

thyl)benzoat
mmol) of 4-(a

d. 
H3OH in CH2

CDCl3) δ 8.04
H), 7.29 (t, J =
.10 (q, J = 7.3
, CDCl3) δ 1

0.7, 55.4, 48.0
H24NO3 [M–H

nformation for

e triethylamm
aminomethyl)

Cl2 with 2% (
4 (d, J = 8.1 H
= 7.4 Hz, 4H
3 Hz, 6H), 1.3
72.2, 158.1, 

0, 45.0, 8.9 pp
H]–: 422.2; fou

r Brandsen et

monium salt
benzoic acid

(v/v) Et3N]. 
Hz, 2H), 7.55 
H), 7.19 (t, J =
30 (t, J = 7.3 H
146.4, 144.1

pm. 
und: 422.1. 

t al., J. Am. Ch

t 
d (Aldrich), 3

(d, J = 7.2 Hz
= 7.3 Hz, 2H)
Hz, 9H) ppm

1, 138.3, 134

hem. Soc. 

371 mg (71%

z, 4H), 7.46 (
), 6.83 (d, J =

m. 
4.3, 130.0, 12

pa

%) of produc

(d, J = 8.9 Hz
= 8.9 Hz, 2H)

29.9, 128.7, 

ge S26 

ct was 

z, 2H), 
), 3.79 

128.0, 

 

 



 

N-MMT-t
From 145
product w
TLC: Rf =
1H NMR: 
7.14 (t, J 
2.06-2.00 
1.00-0.92 
13C NMR
52.3, 44.9
MS: m/z c
 

 

trans-4-amin
 mg (1.0 mm

was isolated as
= 0.27 [4% CH

(500 MHz, C
= 7.3 Hz, 2H
(m, 1H), 1.7
(m, 2H) ppm
: (125 MHz, 

9, 44.3, 35.2, 2
calcd. for C27H

Supporting In

nocyclohexan
mol) of trans-4
s a white solid
H3OH in CH2

CDCl3) δ 7.54
H), 6.78 (d, 8.
76-1.72 (m, 2

m. 
CDCl3) δ 18
29.4, 8.8 ppm
H28NO3 [M–H

nformation for

necarboxylat
4-aminocyclo
d. 
Cl2 with 2% (

4 (d, J = 7.4 H
.8 Hz, 2H), 3
2H), 1.30-1.2

1.4, 158.0, 14
m. 
H]–: 414.2; fou

r Brandsen et

e triethylam
ohexanecarbo

(v/v) Et3N]. 
Hz, 4H), 7.44 
3.77 (s, 3H), 2
7 (m, 2H), 1

47.8, 139.6, 1

und: 414.1. 

t al., J. Am. Ch

monium salt
oxylic acid (T

(d, J = 8.8 H
2.91 (q, J = 7
.16 (t, J = 7

130.1, 128.8, 

hem. Soc. 

t 
TCI America)

Hz, 2H), 7.23 
7.3 Hz, 6H), 
.3 Hz, 9H), 

127.8, 126.2

pa

), 337 mg (65

(t, J = 7.7 Hz
2.25-2.19 (m
1.17-1.10 (m

, 113.1, 71.0,

ge S27 

5%) of 

z, 4H), 
m, 1H), 
m, 2H), 

, 55.3, 

 

 



 

N-MMT-4
From 203
of product
TLC: Rf =
1H NMR:
12H), 6.79
7.3 Hz, 9H
13C NMR
126.5, 124
region). 
MS: m/z c
 

 

4-amino-3-(t
 mg (1.0 mm
t was isolated

= 0.28 [4% CH
 (500 MHz, 
9 (d, J = 8.9 H
H) ppm. 

R: (125 MHz,
4.3, 124.2, 11

calcd. for C28H

Supporting In

trifluorometh
mol) of 4-amin
d as a white so
H3OH in CH2

CDCl3) δ 8.1
Hz, 2H), 6.17

, CDCl3) δ 1
16.5, 113.5, 7

H23F3NO3 [M

nformation for

hyl)benzoic a
no-3-(trifluor
olid. 
Cl2 with 2% (

16 (d, J = 2.0
7 (d, J = 8.8 H

71.8, 158.4, 
71.3, 55.3, 45

M+H]+: 478.2; 

r Brandsen et

acid triethyla
romethyl)benz

(v/v) Et3N]. 
0 Hz, 1H), 7.
Hz, 1H), 3.77 

145.8, 145.0
.0, 8.8 ppm (

found: 478.2

t al., J. Am. Ch

ammonium s
zoic acid (M

.57 (dd, J = 8
(s, 3H), 3.01

0, 136.7, 132
(one expected

2. 

hem. Soc. 

salt 
atrix Scientif

8.9, 2.0 Hz, 
 (q, J = 7.3 H

2.9, 130.2, 12
d peak not ob

pa

fic), 272 mg (

1H), 7.32-7.1
Hz, 6H), 1.25 

28.9, 128.2, 
bserved in aro

ge S28 

(47%) 

19 (m, 
(t, J = 

127.1, 
omatic 

 

 



 

N-MMT-4
From 170 
as a white
TLC: Rf =
1H NMR:
12H), 6.78
6H), 1.30 
13C NMR
127.1, 123
MS: m/z c
 

 

4-amino-3-ch
mg (1.0 mm

e solid. 
= 0.22 [4% CH
 (500 MHz, 
8 (d, J = 8.9 
(t, J = 7.3 Hz

R: (125 MHz,
3.7, 119.4, 11
calcd. for C27H

Supporting In

hlorobenzoic
ol) of 4-amin

H3OH in CH2

CDCl3) δ 7.9
Hz, 2H), 6.08

z, 9H) ppm. 
, CDCl3) δ 1
5.3, 113.5, 7

H22NaClNO3 

nformation for

c acid triethy
no-chlorobenz

Cl2 with 2% (
94 (d, J = 2.0
8 (d, J = 8.7 

71.1, 158.5, 
1.2, 55.3, 45.3
[M+Na]+: 46

r Brandsen et

ylammonium
zoic acid (Ald

(v/v) Et3N]. 
0 Hz, 1H), 7.
Hz, 1H), 6.05

145.1, 144.8
3, 8.8 ppm. 
6.1; found: 4

t al., J. Am. Ch

m salt 
drich), 245 mg

.36 (dd, J = 8
5 (bs, 1H), 3.

8, 136.8, 130

66.1. 

hem. Soc. 

g (55%) of pr

8.6, 2.0 Hz, 
.76 (s, 3H), 3

0.4, 130.3, 12

pa

roduct was is

1H), 7.31-7.1
3.06 (q, J = 7

29.0, 128.4, 

ge S29 

olated 

19 (m, 
.3 Hz, 

128.2, 

 

 



 

N-MMT-4
From 300
isolated as
TLC: Rf =
1H NMR:
12H), 6.7
3H), 1.32 
13C NMR
122.6, 12
region). 
MS: m/z c
 

 

4-amino-3-m
0 mg (2.0 mm
s a white solid

= 0.25 [4% CH
 (500 MHz, 
8 (d, J = 8.9 
(t, J = 7.3 Hz

R: (125 MHz,
1.4, 114.4, 11

calcd. for C28H

Supporting In

methylbenzoic
mol) of 4-am
d. 
H3OH in CH2

CDCl3) δ 7.7
Hz, 2H), 6.0

z, 9H) ppm. 
, CDCl3) δ 1
13.4, 71.0, 55

H25NaNO3 [M

nformation for

c acid triethy
mino-3-methy

Cl2 with 2% (
74 (d, J = 1.1
01 (d, J = 8.6 

72.2, 158.4, 
5.3, 45.5, 18.

M+Na]+: 446.2

r Brandsen et

ylammonium
ylbenzoic acid

(v/v) Et3N]. 
1 Hz, 1H), 7.

Hz, 1H), 3.7

147.2, 145.7
1, 9.1 ppm (o

2; found: 446

t al., J. Am. Ch

m salt 
d (Aldrich), 

.37 (dd, J = 8
76 (s, 3H), 3.

7, 137.4, 131
one expected

6.3. 

hem. Soc. 

766 mg (73%

8.6, 2.1 Hz, 
02 (q, J = 7.3

1.4, 130.3, 12
d peak not ob

pa

%) of produc

1H), 7.31-7.1
3 Hz, 6H), 2.

29.0, 128.1, 
bserved in aro

ge S30 

ct was 

18 (m, 
.24 (s, 

126.9, 
omatic 

 

 



 

N-MMT-4
From 330
isolated as
TLC: Rf =
1H NMR: 
5.97 (d, J 
13C NMR
122.9, 121
MS: m/z c
 

 

4-amino-3-m
0 mg (2.0 mm
s a white solid

= 0.25 [4% CH
(500 MHz, C
= 8.4 Hz, 1H

R: (125 MHz,
1.8, 113.9, 11
calcd. for C28H

Supporting In

methoxybenzo
mol) of 4-am
d. 
H3OH in CH2

CDCl3) δ 7.4
H), 3.91 (s, 3H
, CDCl3) δ 1
3.3, 110.1, 70

H25NaNO4 [M

nformation for

oic acid triet
mino-3-metho

Cl2 with 2% (
44 (d, J = 1.8
H), 3.77 (s, 3H

72.1, 158.4, 
0.7, 55.8, 55.3

M+Na]+: 462.2

r Brandsen et

hylammoniu
xybenzoic ac

(v/v) Et3N]. 
8 Hz, 1H), 7.3
H), 3.00 (q, J =

146.3, 145.7
3, 45.3, 9.0 pp
2; found: 462

t al., J. Am. Ch

um salt 
cid (Acros), 

32-7.18 (m, 1
= 7.3 Hz, 6H)
7, 139.4, 137
pm. 

2.2. 

hem. Soc. 

530 mg (49%

13H), 6.78 (d
), 1.27 (t, J = 

7.4, 130.5, 12

pa

%) of produc

d, J = 8.9 Hz
7.3 Hz, 9H) p

29.2, 128.1, 

ge S31 

ct was 

z, 2H), 
ppm. 
126.9, 

 

 



 

 
4-Acetam
To a solu
added cyc
h (bath te
coarse frit
was conce
for the nex

mido-3-amino
ution of 4-ace
clohexene (1.4
emperature 12
tted funnel, a
entrated unde
xt step withou

Supporting In

obenzoic acid
etamido-3-nit
4 mL, 13.8 m
20 °C). The h
and the Celite
er reduced pre
ut further pur

nformation for

d 
trobenzoic ac

mmol) and 10%
hot reaction m
e cake was wa
essure to give
ification. 

r Brandsen et

cid (498 mg, 
% Pd/C (157
mixture was 
ashed with bo
e a mixture of

t al., J. Am. Ch

2.2 mmol, A
mg). The mi
filtered throu
oiling EtOH 
f starting mat

hem. Soc. 

Acros) in eth
ixture was he
ugh a bed of 
(3  30 mL)
terial and pro

pa

 

hanol (30 mL
eated at reflux

Celite in a 6
. The flow-th

oduct that was

ge S32 

L) was 
x for 4 
60 mL 
hrough 
s used 



 

4-Acetam
The 4-ace
A solution
was stirred
stirred for
The organ
pressure. 
CH2Cl2. A
steps) of t
TLC: Rf =
1H NMR: 
Hz, 1H), 2
13C NMR:
MS: m/z c
 

 

mido-3-(dimet
etamido-3-am
n of 37% aqu
d at room tem
r 24 h. The sa
nic layer was 
The product 

Appropriate p
he product as

= 0.37 (4% CH
(500 MHz, C

2.65 (s, 6H) p
: (125 MHz, C
calcd. for C11H

Supporting In

thylamino)be
minobenzoic a
ueous formald
mperature for 
ample was dil

washed with
was purified 
roduct fractio

s a white solid
H3OH in CH2

CD3OD) δ 7.5
ppm, 2.23 (s, 3
CD3OD) δ 17
H15N2O3 [M+

nformation for

enzoic acid 
cid from the 
dehyde (form
1 h. Glacial a
uted with wa

h saturated Na
by silica gel

ons were com
d. 
Cl2). 
56 (d, J = 1.9
3H) ppm. 

70.0, 169.8, 14
+H]+: 223.1; fo

r Brandsen et

previous reac
malin, 3.0 mL)

acetic acid (0.
ater (50 mL) a
aCl, dried ov
l column chro

mbined and ev

9 Hz, 1H), 7.5

45.6, 138.3, 1
found: 223.1.

t al., J. Am. Ch

ction step wa
) was added, 
.5 mL, 8.7 mm
and extracted 
ver Mg2SO4, a
omatography
vaporated to p

56 (dd, J = 1.

127.9, 127.1, 

hem. Soc. 

as dissolved i
and the clear
mol) added, a
with ethyl ac

and concentra
y, eluting with
provide 266 m

.9, 8.3 Hz, 1H

122.4, 121.9,

pa

in CH3CN (X
r colorless so
and the sampl
cetate (5  30
ated under re
h 1–4% CH3O
mg (55% ove

H), 6.70 (d, J

, 44.8, 24.4 pp

ge S33 

X mL). 
olution 
le was 
0 mL). 
educed 
OH in 
er two 

J = 8.3 

pm. 

 

 



 

4-Amino-
4-acetami
120 °C) i
solution w
extracted 
The soluti
 
TLC: Rf =
1H NMR: 
Hz, 1H), 2
13C NMR:
MS: m/z c
 

 

-3-(dimethyla
do-3-(dimeth
n a solution 

was diluted w
with ethyl ac

ion was evapo

= 0.29 (4% CH
(500 MHz, C

2.65 (s, 6H) p
: (125 MHz, C
calcd. for C9H

Supporting In

amino)benzo
hylamino)benz

of 1:1 CH3O
with water (50
cetate (3  30
orated to prov

H3OH in CH2

CDCl3) δ 7.6
ppm. 
CDCl3) δ 170

H13N2O2 [M+H

nformation for

oic acid 
zoic acid (20

OH:H2O conta
0 mL) and n
0 mL), washe
vide 132 mg (

Cl2). 
6 (d, J = 1.9 

0.9, 149.1, 140
H]+: 181.1; fo

r Brandsen et

00 mg, 0.9 mm
aining 5 M K
eutralized wi
ed with satur
(81%) of the p

Hz, 1H), 7.5

0.7, 128.5, 12
ound: 181.1. 

t al., J. Am. Ch

mol) was hea
KOH (10 mL
ith conc. HC
rated NaCl (3
product as a b

56 (dd, J = 8.

22.4, 119.8, 1

hem. Soc. 

ated at reflux
L) for 12 h. T
l. The neutra

30 mL), and d
brown solid. 

3, 1.9 Hz, 1H

14.7, 44.1 pp

pa

x (bath tempe
The clear col
alized solutio
dried over M

H), 6.70 (d, J

pm. 

ge S34 

erature 
lorless 
n was 

MgSO4. 

J = 8.3 

 

 



 

N-MMT-
Following
(dimethyla
TLC: Rf =
1H NMR: 
5.99 (d, J 
13C NMR
125.9, 123
MS: m/z c
 

 

4-amino-3-(d
g the genera
amino)benzoi

= 0.25 [4% CH
(500 MHz, C
= 8.6 Hz, 1H

R: (125 MHz,
3.3, 120.6, 11
calcd. for C29H

Supporting In

dimethylami
al MMT pr
ic acid, 168 m
H3OH in CH2

CDCl3) δ 7.7
H), 3.77 (s, 3H
, CDCl3) δ 1
4.0, 113.3, 70

H28NaN2O3 [M

nformation for

no)benzoic a
rotection pro
mg (41%) of p
Cl2 with 2% (

74 (d, J = 2.0
H), 3.02 (q, J =

72.7, 158.2, 
0.0, 55.3, 45.3
M+Na]+: 475.

r Brandsen et

acid triethyla
ocedure, from
product was i
(v/v) Et3N]. 

0 Hz, 1H), 7.3
= 7.3 Hz, 6H)
146.0, 143.8

3, 44.5, 9.7 pp
.2; found: 475

t al., J. Am. Ch

ammonium s
m 132 mg 
solated as an 

31-7.19 (m, 1
), 2.71 (s, 6H)
8, 140.2, 137
pm. 
5.4. 

hem. Soc. 

alt 
(0.73 mmo

off-white sol

13H), 6.79 (d
), 1.31 (t, J = 

7.7, 130.4, 12

pa

ol) of 4-am
lid. 

d, J = 8.9 Hz
7.3 Hz, 9H) p

29.1, 128.0, 

ge S35 

mino-3-

z, 2H), 
ppm. 
126.8, 

 

 



 Supporting Information for Brandsen et al., J. Am. Chem. Soc. page S36 

References for Supporting Information 
(1) (a) Flynn-Charlebois, A.; Wang, Y.; Prior, T. K.; Rashid, I.; Hoadley, K. A.; Coppins, R. L.; Wolf, 

A. C.; Silverman, S. K. J. Am. Chem. Soc. 2003, 125, 2444-2454. (b) Wang, Y.; Silverman, S. K. 
Biochemistry 2003, 42, 15252-15263. 

(2) Kost, D. M.; Gerdt, J. P.; Pradeepkumar, P. I.; Silverman, S. K. Org. Biomol. Chem. 2008, 6, 4391-
4398. 

(3) (a) Sachdeva, A.; Chandra, M.; Chandrasekar, J.; Silverman, S. K. ChemBioChem 2012, 13, 654-657. 
(b) Chandrasekar, J.; Silverman, S. K. Proc. Natl. Acad. Sci. USA 2013, 110, 5315-5320. 

(4) (a) Xiao, Y.; Chandra, M.; Silverman, S. K. Biochemistry 2010, 49, 9630-9637. (b) Flynn-
Charlebois, A.; Prior, T. K.; Hoadley, K. A.; Silverman, S. K. J. Am. Chem. Soc. 2003, 125, 5346-
5350. 

(5) Langner, J.; Klussmann, S. BioTechniques 2003, 34, 950-954. 
(6) Taylor, J. R. An Introduction to Error Analysis; University Science Books: Sausalito, CA, 1997. 
(7) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165-195. 
(8) Stauffer, C. E. J. Am. Chem. Soc. 1972, 94, 7887-7891. 
(9) (a) Das, S. R.; Piccirilli, J. A. Nat. Chem. Biol. 2005, 1, 45-52. (b) Perrotta, A. T.; Wadkins, T. S.; 

Been, M. D. RNA 2006, 12, 1282-1291. (c) Wilcox, J. L.; Ahluwalia, A. K.; Bevilacqua, P. C. Acc. 
Chem. Res. 2011, 44, 1270-1279. 

(10) Kim, J. Y.; Kim, B. H. Nucleosides Nucleotides Nucleic Acids 2000, 19, 637-650. 
(11) Ammenn, J.; Altmann, K.-H.; Bellus, D. Helv. Chim. Acta 1997, 80, 1589-1606. 
 
 


