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Human fungal infections have gained recent notoriety following contamination of pharmaceuticals in the
compounding process. Such invasive infections are a more serious global problem, especially for
immunocompromised patients. While superficial fungal infections are common and generally curable,
invasive fungal infections are often life-threatening and much harder to diagnose and treat. Despite the
increasing awareness of the situation's severity, currently available fungal diagnostic methods cannot
always meet diagnostic needs, especially for invasive fungal infections. Volatile organic compounds
produced by fungi provide an alternative diagnostic approach for identification of fungal strains. We
report here an optoelectronic nose based on a disposable colorimetric sensor array capable of rapid
differentiation and identification of pathogenic fungi based on their metabolic profiles of emitted
volatiles. The sensor arrays were tested with 12 human pathogenic fungal strains grown on standard agar
medium. Array responses were monitored with an ordinary flatbed scanner. All fungal strains gave unique
composite responses within 3 hours and were correctly clustered using hierarchical cluster analysis. A
standard jackknifed linear discriminant analysis gave a classification accuracy of 94% for 155 trials. Tensor
discriminant analysis, which takes better advantage of the high dimensionality of the sensor array data,
gave a classification accuracy of 98.1%. The sensor array is also able to observe metabolic changes in
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DOI 10.1039/c3an02112b growth patterns upon the addition of fungicides, and this provides a facile screening tool for determining

www.rsc.org/analyst fungicide efficacy for various fungal strains in real time.

The volatile organic compounds (VOCs) produced by fungi
may have great utility as an alternative diagnostic approach.

1 Introduction

Worldwide mortalities from human invasive fungal infections
are comparable to those from tuberculosis or malaria, and
mortality rates exceed 50%." Fungal infections have received
increasing clinical focus,>* and contaminated compounding
pharmacies have brought this crisis to widespread public
attention.™® Despite the increasing awareness of the situation's
severity, currently available fungal diagnostic methods cannot
always meet diagnostic needs, especially for invasive fungal
infections. Traditional culturing methods are slow and labor-
intensive, immunological tests often suffer from cross
contamination, and molecular diagnostic methods lack stan-
dard criteria or diagnostic scope.**” Thus, the development of
new techniques for the rapid identification of fungal strains
would be highly desirable.
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There are approximately 250 fungal VOCs identified (including
alcohols, phenols, thiols, sulfides, hydrocarbons and aldehydes)
that derive from fungal primary or secondary metabolic path-
ways.? It has been shown that fungal VOC fingerprints can be
used to discriminate noninvasively among medically relevant
fungi®** and to rapidly screen and monitor the effectiveness of
anti-fungal drugs.”>** Previous VOC identification and profiling
methods, however, are either not cost-effective or not robust. Gas
chromatography-mass spectrometry (GC-MS) is high-mainte-
nance and expensive. Moreover, sample collection methods, such
as solid-phase micro-extraction (SPME), can have adsorption bias
and poor recovery.® Conventional electronic nose techniques,
another commonly used VOC fingerprint profiling method, rely
on weak and non-specific chemical interactions that induce
changes in sensors' physical or electrical properties after expo-
sure to VOCs.** Such electronic noses, however, are generally
very sensitive to changes in humidity, require frequent recali-
bration, and are often limited in their sensitivity.

Previously, we have developed an optoelectronic nose
approach using colorimetric sensor arrays for VOC detection
and identification."*® The sensor consists of a disposable array
of cross-responsive nanoporous pigments whose colours are
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changed by diverse chemical interactions with analytes and
which is unresponsive to changes in humidity. This portable,
inexpensive, and highly sensitive optoelectronic nose produces
a composite response which generates a unique molecular
fingerprint for each analyte or mixture. Colorimetric senor
arrays can differentiate and identify single analytes (e.g., toxic
industrial gases'”?**' and explosives®) at concentrations well
below 1 ppm. We have also successfully demonstrated finger-
printing and identification of complex odorant mixtures,
including discrimination of the head gases of beverages,*** the
rapid identification of human pathogenic bacteria,*® and even
breath diagnosis of lung cancer.””

Herein, we report a colorimetric sensor array system for
fungi differentiation and identification by profiling the
composite volatile metabolites produced during fungal growth.

2 Experimental
2.1 VOC sensing experimental procedures

12 fungal strains were tested, including Candida albicans (CAI-
4), Candida albicans (B311), Candida albicans (1-28), Candida
glabrata-1, Candida guilliermondii, Candida parapsilosis, Tricho-
sporon asahii 3323, Debaryomyces hansenii 3333, Candida stel-
latoidea, Candida keyfr, Saccharomyces cerevisiae 4742 and
Kluyveromyces lactis (cf Table S11) Strains were maintained on
solid yeast extract-peptone-dextrose (YPD) medium. Fungal cell
suspensions were prepared by inoculating 10 mL medium with
a single colony, and liquid cultures were incubated overnight
for 16 h at 30 °C. A subculture was prepared by diluting the
overnight culture into 10 mL fresh YPD medium to an optical
density (ODgg) Of 0.1, where 1 OD corresponds to 2.4 x 107
colony forming units per mL (CFU mL™"). After 6 more hours of
rotary shaking at 30 °C, after which all strains were in expo-
nential phase, 4.8 x 10’ CFU were harvested and re-suspended
in 150 pL sterile water (i.e., 3.13 x 10® CFU mL™ ") and then
uniformly spread on 6 cm diameter plates containing 7 mL of
solid YPD medium which had been pre-dried at 37 °C for 1 h.
The inoculating suspension was allowed to soak into the agar
medium for 10 min, after which the sensor array was exposed to
the headspace, at room temperature, of the culture by replacing
the original Petri dish lid with one containing the sensor array
and sealing with parafilm. A control with 150 pL sterile water
inoculation was performed in parallel in each trial.

For anti-fungal drug experiments, 20 pL of stock drug solu-
tions in dimethyl sulfoxide (DMSO) were added to 130 uL sterile
water-suspended fungal cells. 20 pL. DMSO in 130 pL sterile
water was used as control.

2.2 Colorimetric sensor array and composite volatile
response detection

The disposable colorimetric sensor array was prepared by
printing a 6 x 6 matrix of nanoporous dyes onto polyvinylidene
fluoride (PVDF) membrane. PVDF was chosen because it is
neutral, inert, and hydrophobic. The specific dyes used for this
study is listed in Table S2.t In order to support the array in the
head space of the culture and to easily conduct the experiments,
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an engineered Petri dish lid was designed. The colorimetric
sensor array was attached to a plastic stage via 3M double-sided
tape (which showed no effect in controls), which allowed vola-
tiles diffuse and interact with all the dyes. The stage was then
secured to the Petri dish lid using silicone oil (2 x 10° ¢St). After
the engineered lid was in place, the Petri dish was sealed with
parafilm and placed inverted on a commercially available
scanner (Fig. 1 and S17) inside an incubator at 30 °C. Data was
collected every 15 min using Epson Perfection V600 scanner.

Colour difference maps were generated by averaging the
colour value changes of red, green and blue (RGB), at each spot.
The baseline values were taken 15 min after sealing the Petri
dish. Each strain has a unique colour difference map at each
specific time point. Time response profiles were obtained by
plotting colour changes of all 108 channels (i.e., AR, AG, AB
values of 36 spots) over time (Fig. S31). The complete database is
provided in Database S1.}

2.3 Linear discriminant analysis (LDA) and tensor
discriminant analysis (TDA)

Linear discriminant analysis®® was performed using a
commercially available program, SYSTAT13 (Systat Software
Chicago, Illinois, USA, 2009). The data set consisted of 155 array
responses (i.e., observations) at a single time (180 min). In the
classification matrix (Table S371), each observation is classified
into the group where the value of its classification function is
largest. All 13 classes, including 12 strains and 1 background,
were classified 100% correctly. A Jackknifed classification
(leave-one-out cross-validation) was used to test the predict-
ability of the sensor array: one observation is left out and the
rest of the data are used as a training set to generate the linear
discriminant function, the model is then tested with the single
left-out observation, and the procedure is then iterated through
all of the observations in turn. The accuracy thus determined
for the Jackknifed LDA prediction was 94%. The complete
Jackknifed classification matrix table is shown in Table S4.}

For our tensor discriminant analysis (TDA), we used the
colour difference changes (AR, AG, AB) from all 36 dye spots for
9 different times (from 120 min to 360 min in 30 min intervals).
TDA is a generalization of LDA to multiway arrays.>*>*' TDA
constructs optimal linear classifiers in a trimodal fashion,
optimized separately for (1) the combination vector of dye spot,
(2) the effects of the three colour factors (AR, AG, AB) for each
dye, and (3) the temporal progression. The general strategy of
the TDA algorithm in the colorimetric sensor array classifica-
tion can be clearly illustrated using the flow chart given below in
Scheme S1.7%°

3 Results and discussion

3.1 Colorimetric sensor arrays

A colorimetric sensor array uses cross-reactive chemoresponsive
colorants whose colour changes reflect a diverse range of
chemical interactions between the analytes and the colorants.
We have developed an optimized set of 36 dyes that yield an
essentially universal chemical sensor array.'” The dyes fall into
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Fig. 1 Schematic experimental apparatus. (A) An image of the CSA from a flat-bed scanner with different responsive dyes printed on hydro-
phobic PVDF substrate. For a complete list of dyes used in this research see ESI.1 (B) Inverted Petri dish showing a colorimetric sensor array
supported in a plastic stage in the head gas volume. Fungal cells were uniformly inoculated on YPD agar growth medium and the array digitally
imaged with a flatbed scanner inside an incubator at 30 °C. Colour changes were obtained as a function of time.

four classes: (1) dyes containing metal ions (e.g., metal-
loporphyrins) that respond to Lewis basicity (that is, electron-
pair donation, metal-ion ligation), (2) pH indicators that
respond to Brensted acidity/basicity (that is, proton acidity and
hydrogen bonding), (3) dyes with large permanent dipoles (e.g.,
vapochromic or solvatochromic dyes) that respond to local
polarity, and (4) metal salts that participate in redox and pre-
cipatory reactions. This colorimetric sensor array, therefore, is
responsive to the chemical reactivity of analytes, rather than to
their effects on secondary physical properties (e.g., mass,
conductivity, adsorption, etc.). The specific dyes used for this
study are given in Table S2.}

We selected twelve clinically and commercially relevant
fungal strains to test the CSA's ability to differentiate strains
based on their VOC profiles. These twelve strains (Table S17)
were grown on YPD agar (yeast extract, peptone, and dextrose), a
commonly used rich growth medium chosen because it
accommodates a wide range of fungal strains. It is worth
mentioning that YPD medium (control, Fig. S3t) also gives off
volatiles. As a result, the signals obtained from the CSA colour
changes are from the combined volatiles from the YPD medium
and from the fungi.

3.2 Colour difference maps and time response profiles

For analysis of the colorimetric sensor arrays, colour difference
maps were generated from the colour values (i.e., red, green and
blue (RGB) values) for each spot at any given time by subtracting
the baseline values of each spot taken at 15 min after the Petri
dish was sealed. Representative difference maps are given for
Candida albicans (CAI-4) from 15 to 480 min are given in Fig. 2A.
At any given time, each of the 12 fungal strains shows a unique
colour difference map; for example, Fig. S21 shows the colour
difference maps of the 12 strains after 180 min growth. The
colour difference maps of all 12 strains are clearly differentiable
by eye, even before any statistical analysis. Qualitatively, one
may easily differentiate among the three Candida albicans
strains, and identify Debaryomyces hansenii, which is often
misdiagnosed as Candida guilliermondii.**

Time response profiles were obtained by plotting the colour
changes of the individual channels (i.e., AR, AG, AB values for
36 spots) vs. time. For clarity of presentation, only the ten most
responsive channels are shown in Fig. 2B, again for C. albicans
as an example. The time response profiles for all 12 strains of
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fungi are provided as Fig. S3.f The differences in the time
response provides for each of the fungal strains serve as
fingerprints that allow one both to qualitatively differentiate
and identify strains even by the naked eye and to provide a
quantitative pattern analysis.

The time response profiles for different fungal strains vary
both in the intensities of the colour changes and in the times at
which such response begin to occur. For example, thiols and
sulfides are common metabolites among fungi,* and the sensor
spot that are most responsive to thiols and sulfides (i.e., the blue,
green, and purple lines in Fig. 2B and S31) do indeed undergo
large colour changes. The timings of these colour changes,
however, are strain specific: rapid changes occur for C. albicans
(CAT-4) (even after just 15 min), whereas the changes begin to
occur only after 180 min for C. keyfr, 450 min for C. stellatoidea,
and not at all with D. hansenii. This thiol and sulfide responding
spot has a dye formulation containing Pb(O,CCH3), (Table S27).

360 min
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Fig. 2 Sensor array response to Candida albicans (CAl-4) out-gases.
(A) Colour difference maps (i.e., AR, AG and AB of 36 sensor spots) at
different time points were generated by subtracting the RGB values
from baseline at 15 minutes after sealing of Petri dish. For visualization
in the colour difference maps, four bit colour was expanded to 8 bit
colour (i.e., the RGB values of 4-19 were expanded to 0-255). (B)
Temporal profile from the 10 most responsive channels vs. time.
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3.3 Pattern recognition and statistical analysis

To provide a statistically meaningful analysis, we utilized a
standard chemometric approach, hierarchical cluster analysis
(HCA),*® to discriminate the VOC temporal profiles among the
12 strains and to demonstrate excellent reproducibility among
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replicates. HCA is a model-free clustering analysis that gener-
ates a dendrogram based on the Euclidean distances between
the difference maps of each trial using all 108 dimensions. No
mis-clusterings were observed for data from 155 trials after 180
min growth (Fig. 3A), which demonstrates that the method is
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Fig. 3 Classification analysis. (A) Hierarchical cluster analysis dendrogram (using Ward's method) of 12 fungal strains and YPD medium back-
ground at 180 min with 2.4 x 107 colony forming units of inoculation; no errors in clustering were observed among a total of 155 trials. (B) Scatter
plot of the first two directions from the tensor discriminant analysis. Surprisingly good discrimination of the fungal strains is achieved even with
only two TDA directions, which account for only 18.2% of the total discriminant power. The accuracy of classification using TDA maximizes at

98.1% using an optimal 10 dimensions.
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reproducible and differentiates among different strains of
fungi. It is worth noting that the clustering is not directly related
to fungal phylogenetic classifications. This is not surprising as
our methodology detects metabolic byproducts and is only
indirectly responsive to genomic sequence: we are probing the
metabolomics of the microorganisms, not their genomes.

To provide a quantitative evaluation of the accuracy of clas-
sification of the fungal strains by our colorimetric sensor arrays,
we first completed a standard linear discriminant analysis
(LDA). LDA of the array response (i.e., the RGB colour changes of
each sensor spot) at 180 min gave a classification matrix with no
errors (Table S37). To quantitatively test the prediction accuracy
of a new unknown input using LDA, a standard Jackknifed
analysis was performed (leaving out one observation at a time
and permuting through the full dataset), giving a prediction
accuracy of 94% (Table S4f). Data from these colorimetric
sensor arrays have an exceptionally high dimensionality, and
LDA does not provide optimal classification with such data due
to the “curse of dimensionality” (i.e., the difficulties that a large
number of dimensions can create for function approximation,
model fitting, information extraction, as well as computation).**

Tensor discriminant analysis (TDA) is an array generaliza-
tion of LDA better able to take advantage of high dimension-
ality.**** More precisely, tensor discriminant analysis is used to
classify multi-way array measurements (i.e., “tensor measure-
ments”), rather than one-way vector measurements. The data
collected using colorimetric sensor arrays can be viewed as a 3-
way tensor with the first mode corresponding to choice of the
dye, the second mode corresponding to the effects of the colour
changes (i.e., AR, AG, AB), and the third mode corresponding to
the time progression.” The general strategy of tensor discrim-
inant analysis is to find orthogonal linear classifiers so as to
maximize the ratio of between-class variation to within-class
variation (ie., to maximize discrimination among classes).
Those orthogonal linear classifiers are essentially linear
combinations of the three-way interactions of (1) the effects of
the dye spot choice, (2) the three colour changes of each spot
(i.e., AR, AG, AB), and (3) the temporal evolution.

Tensor discriminant analysis can greatly improve the sensi-
tivity, specificity, and computational efficiency of discriminant
analysis method.>* LDA and most other existing classification
methods largely ignore the array structure of the colorimetric
sensor array data: the three colour changes for each spot are not
fully independent dimensions compared to the three colour
changes of the other spots. For our array data over time, LDA
would simply vectorize each 3-way observation into a vector with
972 dimensions (36 x 3 x 9, i.e., where 36 dyes x 3 colour
factors (AR, AG, AB) x 9 time points (120 min to 360 min in 30
min intervals)) and find classifiers using 972 parameters. In
contrast, TDA constructs the optimal linear classifiers and
estimates them in a trimodal tensor (separating spot choice,
colour, and time). By separating these three classes of effects,
we can (1) keep the original design information and avoid
interpretation difficulties, (2) substantially limit the effective
dimensionality (we only need 48 parameters (i.e., 36 + 3 + 9) for
TDA, rather than 972 parameters in LDA or PCA), and (3)
improve prediction accuracy.

1926 | Analyst, 2014, 139, 1922-1928
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As a result, the directions created in TDA are not obscured by
the noise present in the very large number of additional dimen-
sions in LDA or PCA. As a consequence, excellent discrimination
of the fungal strains is achieved even with only two TDA direc-
tions, which account for only 18.2% of the total discriminant
power (as defined by the ratio of the between-group variation to
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Fig. 4 Time response profiles of the 10 most responsive channels of
array response to Candida albicans (CAI-4) after subtraction of the
YPD growth medium background. As the initial inoculum is decreased,
the time response profiles decrease in intensity. At 720 min, the LOD is
approximately 2 x 10* CFU.
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the within-group variation), as seen in Fig. 3B. The prediction
accuracy of TDA was assessed quantitatively by using a Jack-
knifed classification (leave-one-out cross-validation using the rest
of the data as a training set and permuting through the full
dataset). The prediction accuracy of the tensor discriminant
analysis reaches a maximum of 98.1% using an optimal 10
dimensions (Fig. S4,1 based on 155 trials).

3.4 Limit of detection

The limit of detection (LOD) at a given time may be defined as the
smallest number of viable fungal cells in the initial inoculum that
will give a response from a single channel that is larger than three
times the noise at that given time. A more quantitative measure
of the LOD at 720 min can be approximated as 3[I]o/Cp,ax Where
[7] is the initial inoculum concentration, ¢ is the standard devi-
ation of the channel with the largest net colour response at 720
min, and Cy,. is that largest net colour response. Time response
profiles of the 10 most responsive channels of array response to
Candida albicans (CAI-4) is shown in Fig. 4. We can interpolate
the LOD from the three lowest initial inocula (Fig. S51), and
calculate the LOD after 720 min. to be 2 x 10* CFU for the initial
inoculum. One may also define a time to detection as the time at
which the response of a single channel is larger than three times
the noise. Not surprisingly, there is a roughly linear correlation
between the time to detection vs. the log of the initial inoculum
(Fig. S61); for example, with an initial inoculum of 10° CFU, the
time to detection is ~400 min.

3.5 Effects of fungicides on metabolic patterns

Although chemical profiling at a single time point can be ach-
ieved by methods such as GC-MS, monitoring the changing VOC
profile continuously during culture growth is challenging.
Using this colorimetric sensor array, however, one can monitor
cell growth conditions continuously and inexpensively. It is well
established that there are changes of metabolic states in
response to fungicides,*>** and we should expect that the VOCs
produced by the fungi should therefore change under drug
induced stress. In this manner, the colorimetric sensor array
can be used to monitor changes in fungal metabolic states or in
response to fungicides during cell growth.

Indeed, the array response (as measured by the total change
in the Euclidian distance (AED) of all 108 colour channels) of C.
albicans (CAI-4) is substantially affected by the presence of
various concentrations of clotrimazole or miconazole (Fig. 5A).
The colour difference maps (Fig. 5B) demonstrate the shut-
down of VOC production at high concentrations of anti-fungal
drugs: volatiles are no longer being released (and the AED of the
sensor array no longer changes) after roughly 180 min, for clo-
trimazole at >400 ug mL~" and for miconazole at >0.5 ug mL™ %,
which represent the minimum inhibitory concentrations of two
drugs. At lower concentrations, the volatile metabolites are
clearly changed, relative to untreated fungi, which can lead to
either greater or diminished sensor array response (Fig. 5B).
While the colorimetric sensor array does not provide a direct
indication of what the changes in the VOCs may be (i.e., the
component by component analysis provided by GC-MS, for
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Fig. 5 Sensor array response to fungal volatiles under the influence of
anti-fungal drugs. (A) Total array response (change in Euclidean distance
after subtraction of background) under the influence of fungicidal drugs.
Significant changes in array response are observed vs. clotrimazole or
miconazole concentrations. (B) Colour difference maps vs. YPD growth
medium control after 400 min as a function of fungicide concentration.
Changes in the array response patterns appear to occur at =10 ng mL™*
clotrimazole and at =1 ng mL™* for miconazole, which are presumably
due to changes of metabolic states under the stress of the anti-fungal
drug environment. The complete shutdown of volatile metabolites
occurs at >400 pg mL™* clotrimazole and at >0.5 ug mL~* miconazole.

example), it does yield a rapid and simple indication that
significant metabolic changes are occurring. This could prove
useful for rapid parallel screening of fungicidal effectiveness.

4 Conclusions

In summary, we have used an optoelectronic nose to detect fungal
VOCs and generate unique metabolic patterns that differentiate
among twelve different fungal strains with high accuracy. The
sensor array is also able to observe metabolic changes in growth
patterns upon the addition of fungicides, which provides a facile
screening tool for determining fungicide efficacy in real time.

Acknowledgements

This work was supported through NIH GEI award U01ES016011.
We thank Professor Lois L. Hoyer for generously providing

Analyst, 2014, 139, 1922-1928 | 1927


http://dx.doi.org/10.1039/c3an02112b

Published on 26 February 2014. Downloaded by University of Illinois - Urbanaon 01/07/2014 22:18:17.

Analyst

fungal strains. We thank Jacqueline M. Rankin and John R.G.
Sander for helpful suggestions and advice. KSS has financial
interests in iSense LLC, which is commercializing applications
of colorimetric sensor arrays. No funding from iSense was
involved in this research.

References

1 G. D. Brown, D. W. Denning, N. A. R. Gow, S. M. Levitz,
M. G. Netea and T. C. White, Sci. Transl. Med., 2012, 4, 1-9.

2 G. D. Brown, D. W. Denning and S. M. Levitz, Science, 2012,
336, 647.

3 M. Nucci and K. A. Marr, Clin. Infect. Dis., 2005, 41, 521-526.

4 P. R. Murray and H. Masur, Crit. Care Med., 2012, 40, 3277~
3282.

5 B. M. Kuehn, JAMA, J. Am. Med. Assoc., 2013, 309, 219-221.

6 J. S. Klutts and B. Robinson-Dunn, J. Clin. Microbiol., 2011,
49, S39-542.

7 S. F. Yeo and B. Wong, Clin. Microbiol. Rev., 2002, 15, 465-
484.

8 S. U. Morath, R. Hung and J. W. Bennett, Fungal Biol. Rev.,
2012, 26, 73-83.

9 N. Sahgal, B. Monk, M. Wasil and N. Magan, Br. J. Dermatol.,
2006, 155, 1209-1216.

10 J. M. Scotter, V. S. Langford, P. F. Wilson, M. J. McEwan and
S. T. Chambers, J. Microbiol. Methods, 2005, 63, 127-134.

11 N. Sahgal and N. Magan, Sens. Actuators, B, 2008, 131, 117-
120.

12 K. Naraghi, N. Sahgal, B. Adriaans, H. Barr and N. Magan,
Sens. Actuators, B, 2010, 146, 521-526.

13 N. P. Pont, C. A. Kendall and N. Magan, Mycopathologia,
2012, 173, 93-101.

14 F. Rock, N. Barsan and U. Weimar, Chem. Rev., 2008, 108,
705-725.

15 N. A. Rakow and K. S. Suslick, Nature, 2000, 406, 710-713.

16 K. S. Suslick, Curr. Opin. Chem. Biol., 2012, 16, 557-563.

17 S. H. Lim, L. Feng, J. W. Kemling, C. J. Musto and
K. S. Suslick, Nat. Chem., 2009, 1, 562-567.

18 M. C. Janzen, ]J. B. Ponder, D. P. Bailey, C. K. Ingison and
K. S. Suslick, Anal. Chem., 2006, 78, 3591-3600.

19 K. S. Suslick, D. P. Bailey, C. K. Ingison, M. Janzen,
M. E. Kosal, W. B. McNamara III, N. A. Rakow, A. Sen,

1928 | Analyst, 2014, 139, 1922-1928

View Article Online

Paper

J. J. Weaver, J. B. Wilson, C. Zhang and S. Nakagaki, Quim.
Nova, 2007, 30, 677-681.

20 L. Feng, C. J. Musto, J. W. Kemling, S. H. Lim, W. Zhong and
K. S. Suslick, Anal. Chem., 2010, 82, 9433-9440.

21 L. Feng, C. J. Musto, J. W. Kemling, S. H. Lim and
K. S. Suslick, Chem. Commun., 2010, 46, 2037-2039.

22 H. Lin and K. S. Suslick, J. Am. Chem. Soc., 2010, 132, 15519-
15521.

23 B. A. Suslick, L. Feng and K. S. Suslick, Anal. Chem., 2010, 82,
2067-2073.

24 C. Zhang, D. P. Bailey and K. S. Suslick, J. Agric. Food Chem.,
2006, 54, 4925-4931.

25 C. Zhang and K. S. Suslick, J. Agric. Food Chem., 2007, 55,
237-242.

26 J. R. Carey, K. S. Suslick, K. I. Hulkower, J. A. Imlay,
K. R. Imlay, C. K. Ingison, J. B. Ponder, A. Sen and
A. E. Wittrig, J. Am. Chem. Soc., 2011, 133, 7571-7576.

27 P. ]J. Mazzone, X. F. Wang, Y. M. Xu, T. Mekhail,
M. C. Beukemann, J. Na, J. W. Kemling, K. S. Suslick and
M. Sasidhar, J. Thorac. Oncol., 2012, 7, 137-142.

28 S. J. Haswell, Practical guide to chemometrics, CRC Press,
1992.

29 W. Zhong and K. S. Suslick, Technometrics, 2014, 56, in press,
http://publish.illinois.edu/wenxuan/files/2012/2012/
matrix_clust.pdf.

30 B. Li, K. M. Kim and N. Altman, Ann. Statist., 2010, 38, 1094—
1121.

31 P. Zeng and W. Zhong, Topics Appl. Stat., 2013, 55, 213-227.

32 M. Desnos-Ollivier, M. Ragon, V. Robert, D. Raoux,
J.-C. Gantier and F. Dromer, J. Clin. Microbiol., 2008, 46,
3237-3242.

33 G. L. Newton, K. Arnold, M. S. Price, C. Sherrill,
S. B. Delcardayre, Y. Aharonowitz, G. Cohen, J. Davies,
R. C. Fahey and C. Davis, J. Bacteriol., 1996, 178, 1990-1995.

34 D. L. Donoho, AMS Math Challenges Lecture, 2000, pp. 1-32,
http://www-stat.stanford.edu/~donoho/Lectures/AMS2000/
Curses.pdf.

35 P. Belenky, D. Camacho and ]J. J. Collins, Cell Rep., 2013, 3,
350-358.

36 R. D. Cannon, E. Lamping, A. R. Holmes, K. Niimi,
K. Tanabe, M. Niimi and B. C. Monk, Microbiology, 2007,
153, 3211-3217.

This journal is © The Royal Society of Chemistry 2014


http://dx.doi.org/10.1039/c3an02112b

	Identification of pathogenic fungi with an optoelectronic noseElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an02112b
	Identification of pathogenic fungi with an optoelectronic noseElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an02112b
	Identification of pathogenic fungi with an optoelectronic noseElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an02112b
	Identification of pathogenic fungi with an optoelectronic noseElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an02112b
	Identification of pathogenic fungi with an optoelectronic noseElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an02112b
	Identification of pathogenic fungi with an optoelectronic noseElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an02112b

	Identification of pathogenic fungi with an optoelectronic noseElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an02112b
	Identification of pathogenic fungi with an optoelectronic noseElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an02112b
	Identification of pathogenic fungi with an optoelectronic noseElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an02112b
	Identification of pathogenic fungi with an optoelectronic noseElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an02112b
	Identification of pathogenic fungi with an optoelectronic noseElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an02112b
	Identification of pathogenic fungi with an optoelectronic noseElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an02112b

	Identification of pathogenic fungi with an optoelectronic noseElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an02112b
	Identification of pathogenic fungi with an optoelectronic noseElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an02112b


