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The development of our understanding of the chemical and 
physical properties of the photosynthetic reaction center (RC) 
has been greatly assisted by studies of synthetic analogs.  For 
example, remarkably long-lived charge-separated states have 
been observed in synthetic porphyrin–quinone tetrads and pen-
tads, and the physiological significance of chromophore orien-
tation and donor–acceptor energetics in reaction centers has 
been addressed through studies of gable porphyrin dimers and 
porphyrin–quinone complexes, respectively.[1] The distinctive 
structural feature of the RC, however, is the closely stacked 
“special pair” of bacteriochlorophylls that act as the primary 
photoelectron donor; unfortunately, no model compounds to 
date feature such a closely spaced cofacial porphyrin dimer as 
the primary electron donor.  Stacked porphyrin macrocycles 
constrained by rigid organic tethers do not closely resemble the 
special pair because their mean porphyrin–porphyrin separa-
tion is relatively large, typically 5 Å.[1,2] Much better building 
blocks for synthetic analogues of the RC are bis(porphyrin) 
metal sandwich complexes in which the porphyrin–porphyrin 
separations are about 3 Å.[3] We now describe the first com-
pounds that combine two key structural features present in the 
reaction center of photosynthetic organisms: a donor consisting 
of a cofacial arrangement of two porphyrinic macrocycles held 
about 3 Å apart, and a quinone electron acceptor. 

We have previously developed a method to convert the sand-
wich complex [Zr(TTP)2] 1 (TTP = 5,10,15,20-tetra(p-tolyl)-
porphyrinato dianion) to the amine-substituted bis(porphyrin) 
zirconium species [Zr(TTP)(TTP-NH2)] 2, in which the amine 
group is attached to a β-pyrrole site on one of the porphyrin 
rings.[4,5] In such bis(porphyrin) zirconium species, the two por-
phyrin rings are cofacial with an N4 mean plane separation of 
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Scheme 1. 

 
Fig. 1.  Schematic representation of 4 (minimum energy configuration) illustrating 
the proximity of the anthraquinone substituent to two of the p-tolyl groups.  The 
structure was calculated by using the programs Quanta and Charm. 
 
 
2.56 Å; the mean plane separation for all 24 atoms of the por-
phyrin is 3.28 Å.  These strongly interacting porphyrin subunits 
closely resemble the “special-pair” of chlorophylls in the photo-
synthetic reaction center, both in their cofacial architecture and 
spacing and in their electronic properties.[3]  Condensation of 2 
with 2-(chlorocarbonyl)anthraquinone (3) (Scheme 1) in excess 
pyridine yields the quinone-derivatized bis(porphyrin) complex 
[Zr(TTP)(TTP-NHCOAQ)] 4 (Fig. 1).[6] 

The UV/Vis spectrum of 4 contains a Soret band at 400 nm 
and several Q bands at 511, 557, and 696 nm;  these values are 
essentially unchanged from those obtained for the parent com-
plex 1 (Fig. 2).  Holten et al.[7] have assigned the Q´´ band at 
511 nm to a charge-resonance state having a wavefunction de-
scribed as (A+ B–  +  A– B+ )/√2̄, where A and B represent the 
two porphyrin rings.  The absorption at 557 nm is ascribed to a 
“normal” metalloporphyrin Q band.  The lowest energy absorp-
tion at 696 nm, called Q´, involves a π-π* transition that is char-
acteristic of all porphyrin dimers in which the macrocycles are 
separated by about 3 Å.[7]  The anthraquinone unit absorbs 
strongly at 258 nm, and the features seen are again only 
slightly altered relative to those of 2-(phenylamidocarbonyl)-
anthraquinone (5). 

The cyclic voltammogram of the quinone-derivatized por-
phyrin complex 4 contains two oxidation and four reduction 
waves. The first two reduction waves involve the anthraquinone 
unit, while the third and fourth involve the bis(porphyrin) π-
electron system, as judged from comparisons with the redox 
potentials of related species (Table 1).  The oxidation potential 
of the porphyrin π-electron system in 4 is approximately 100 mV 

 
Fig. 2.  UV/Vis spectra of complexes 4 and 6 and of quinone 5 in CH2Cl2. 
 
 
Table l.  Electrochemical potentials of the zirconium bis(porphyrinate) sandwich 
complexes and of the quinone 5 [a].  

     Porphyrin        Quinone      Porphyrin 
Compound Oxid2 Oxid1 Redn1 Redn2 Redn1 Redn2 

1 940 515   –1322 –1674 
2 836 432   –1357 –1710 
4 947 523 –819 –1265 –1363 –1678 
5   –782 –1285   

 [a] All potentials measured [mV] in CH2Cl2 vs Ag/AgCl, [nBu4NPF6] = 0.1 M. Scan 
speed = 100 mVs-1.  [FeCp2] oxidation occurs at 493 mV under these conditions. 
 
higher than that of the amine-substituted sandwich complex 2.  
Furthermore, the reduction potentials for the anthraquinone 
substituent in 4 are shifted cathodically by about 40 mV relative 
to those seen for quinone 5.  These changes in the redox poten-
tials suggest that the quinone substituent is electron-withdraw-
ing.  The reduction potentials of the porphyrin π-electron 
system in 4 remain nearly unchanged. 

Oxidized dimeric porphyrins exhibit characteristic near-IR 
absorptions due to electronic transitions between bonding and 
antibonding molecular orbitals.[8]  Treatment of 4 with phen-
oxathiinylium hexachloroantimonate[9] yields the SbCl6

– salt 6 
 

[Zr(TTP)(TTP-NHCOAQ)][SbCl6]   6 
 
of the double-decker quinone monocation.  Both chemical and 
electrochemical oxidation takes place from the porphyrin 
HOMO.  The near-IR absorption band for 6 occurs at 1096 nm 
compared to that for [Zr(TPP)2]+ at 1075 nm.[8]  Such electronic 
transitions are of particular interest since a broad transition 
(1300 nm) is also found for the special pair of bacteriochloro-
phyll-b, [(BChl)2]+.[10] Oxidation of the bis(porphyrin) π-elec-
tron system increases the extent of π-π overlap between the two 
porphyrin rings;  consequently, the Soret band of 6 is shifted to 
higher energy (Fig. 2).[11] 

We have also prepared the pyromellitimide-substituted bis-
(porphyrin) sandwich complex 7 by treatment of 2 with hexyl-
amine and pyromellitic dianhydride (Scheme 2).[12]  The mass 
spectrum confirms the presence of an N-hexyl-pyromellitimide 
group bound to the bis(porphyrin)zirconium core (m/z 1725).  
The UV spectrum of 7 shows absorptions due to the pyromel-
litimide substituent at 310 and 320 nm.  Porphyrin–pyro-
mellitimide complexes are ideal systems with which to study 
light-induced charge separation processes because reduced 
pyromellitimide absorbs strongly at 715 nm, a wavelength at 
which the bis(porphyrin) subunit is optically transparent.[12] 

Until now, models of the photosynthetic reaction center have 
all relied on monomeric porphyrins as the electron donor.  The 
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Scheme 2. 
 
 
two new structural analogs of the reaction center presented here 
are the first in which an electron acceptor is attached to a por-
phyrin pair in which the porphyrin planes are held within 3 Å of 
each other.  Comparisons of the electron transfer kinetics and 
the excited-state lifetimes of 4 and 7 with those of the reaction 
center are currently under investigation.[13,14] 
 
Experimental Procedure 
 
4:  A solution of 3 (64 mg, 0.24 mmol) in toluene was added dropwise to a suspension 
of 2 (140 mg, 0.097 mmol) in toluene and pyridine (2 mL), and the resulting mixture 
was stirred at room temperature for 2 d under Ar. The solvent was removed and the 
residue was extracted with CH2Cl2. The extract was purified by thin layer chro-
matography on silica plates with toluene as the eluting solvent (Rf = 0.18).  Product 
4 was then recrystallized by slow diffusion of hexane into a toluene solution at 25 °C. 
Yield:  104 mg (66%).  Calcd. for [Zr(TTP)(TTP-NHCOAQ)]:  C 79.4, H 4.75, N 
7.51, Zr 5.44; found: C 79.2, H 4.66, N 7.59, Zr 5.31. IR (Nujol): ν ̃ = 1678 cm-1 
(C=O). UV/Vis (CH2Cl2): λmax (ε) = 258 (98000), 400 (295000), 511 (28000), 557 
(11000), 696 nm (1300).  1H NMR (CD2Cl2, 500 MHz, -80 °C):  δ = 9.63–9.3 (8 
d, o-H), 9.30 (s, pyrr-H adjacent to AQ), 9.0 (br. s, amido N-H), 8.74 (s, AQ H1), 
8.49–8.45 (m, AQ H4-H8), 8.43–8.02 (14 d, pyrr-H), 8.01–7.62 (8 d, m-H), 7.88–
7.82 (m, AQ H3), 7.09–6.81 (8 d, m´-H), 6.34–5.88 (8 d, o´-H), 2.69–2.57 (8 s, 
p-CH3). FAB MS (8 kV, 3-nitrobenzyl alcohol): m/z (%): 1676 (100) [M+ + H]. 
6: Phenoxathiinylium hexachloroantimonate (34 mg, 0.064 mmol) was added to 4 
(100 mg, 0.060 mmol) in CH2Cl2 (75 mL), and the resulting mixture was stirred for 
1 h  under Ar. The solution was concentrated to about 1 mL and crystals of the salt 
6 were obtained by slow diffusion of toluene into the CH2Cl2 solution at –78 °C. 
Yield: 72 mg (60%). Calcd. for [Zr(TTP)(TTP-NHCOAQ)][SbCl6]•0.5CH2Cl2: C 
65.2, H 3.92, N 6.13, Zr 4.44, Sb 5.92, Cl 12.1; found: C 64.6, H 4.01, N 6.08, Zr 
4.35, Sb 6.01, Cl 11.8. IR (Nujol): ν ̃ = 1678 (C=O), 1302 (cation marker band), 
1292 cm-1 (cation marker band). UV/Vis/NIR (CH2Cl2): λmax (ε) = 259 (104000), 
383 (156000), 554 (12000), 1096 nm (fwhm = 1300 cm-1). EPR (95 K, 1:1 
CH2Cl2:C7H8): g = 2.0037, linewidth = 6.41 G. Electrospray ionization MS: 1675 
[M+], 2005 [MSbCl6+]. 
7: Pyromellitic dianhydride (34 mg, 0.064 mmol) was added to a mixture of 2 (15 mg, 
0.01 mmol) and hexylamine (3 mg, 0.03 mmol) in N,N-dimethylformamide (DMF) 
(2 mL). The resulting mixture was heated to reflux for 12 h. The solvent was re-
moved, acetic anhydride (2 mL) was added, and the mixture was allowed to reflux 
for 1 d. The solvent was removed and the resulting product 7 was purified by thin 
layer chromatography on silica plates (Rf = 0.16). Yield: 1 mg (6%). UV/Vis 
(CH2Cl2): λmax (ε) = 310 (117000), 319 (129000), 400 (295000), 511 (27000), 555 
(13000), 689 nm (5000). FAB MS (8 kV, 3-nitrobenzyl alcohol): m/z (%): 1725 (30) 
[M+ +H]. 
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