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With the rapid development of nano-technology, a “colorimetric sensor array” (CSA) that is referred to as
an optical electronic nose has been developed for the identification of toxicants. Unlike traditional sensors
that rely on a single chemical interaction, CSA can measure multiple chemical interactions by using
chemo-responsive dyes. The color changes of the chemo-responsive dyes are recorded before and after
exposure to toxicants and serve as a template for classification. The color changes are digitalized in the
form of a matrix with rows representing dye effects and columns representing the spectrum of colors. Thus,
matrix-classification methods are highly desirable. In this article, we develop a novel classification method,
matrix discriminant analysis (MDA), which is a generalization of linear discriminant analysis (LDA) for
the data in matrix form. By incorporating the intrinsic matrix-structure of the data in discriminant analysis,
the proposed method can improve CSA’s sensitivity and more importantly, specificity. A penalized MDA
method, PMDA, is also introduced to further incorporate sparsity structure in discriminant function.
Numerical studies suggest that the proposed MDA and PMDA methods outperform LDA and other
competing discriminant methods for matrix predictors. The asymptotic consistency of MDA is also
established. R code and data are available online as supplementary material.

KEY WORDS: Classification; Feature selection; Linear discriminant analysis; Matrix predictors;
Regularization; Sensor array.

1. INTRODUCTION

The development and refinement of sensors for a rapid identi-
fication of volatile chemical toxicants (VCTs) is very important.
Integrated into a security system, a sensor can be used to au-
tomatically trigger an instantaneous response, such as shutting
down and isolating ventilation systems when there is an acciden-
tal release of VCTs. A powerful sensor is crucial to curtail the
spread of chemical spills and to limit the areas of contamination.

The traditional sensor systems that have been widely used
in detecting VCTs are vapor sensors. Vapor sensors rely either
on absorption into a set of polymers or on oxidations at heated
metal oxides. While such systems generally allow for discrimi-
nating VCTs in different chemical classes, the discrimination of
similar VCTs within one chemical class remains a challenging
goal. To surmount the challenge, a low cost yet highly sensitive
sensor called “colorimetric sensor array” (CSA) has been de-
veloped (Suslick et al. 2007; Lim et al. 2008; Feng et al. 2010).
Analogous to the mammalian olfaction system, which recog-
nizes smells by the composite electronic signals generated by
different epithelium olfactory cells in response to the smells,
CSA uses large amount of chemical dyes to turn a smell into
optical composite signals. Thus, CSA sensor is also referred to
as “optical electronic nose.” As shown in Figure 1(a), CSA is
simply a digitally imaged, two-dimensional extension of litmus
paper (Rakow and Suslick 2000; Rakow et al. 2005); Zhang and
Suslick 2005). Thirty-six chemo-responsive dyes are randomly
assigned to 36 spots scattered as a 6 × 6 array on a chip. The
36 dyes can measure multiple chemical interactions, for exam-
ple, ligand–metal coordination, Lewis acid-base interactions,

and strong dipolar interactions. For any odorant, a response is
generated by digital subtraction, pixel by pixel, of the color of
36 preprint chemo-responsive dyes before and after exposure:
red value after exposure (Rafter) minus red value before (Rbefore),
green minus green, blue minus blue. Averaging the centers of
the spots (∼300 pixels) for each dye, the result is simply a
36 × 3 matrix, where each row represents the color change of
a dye and each column represents one of the three spectrum
coordinates (red, green, and blue) of a color cube. As shown in
Figure 1(b), the matrix is a color fingerprint of a VCT and can
be used to classify VCTs. By measuring a much broader range
of chemical interactions, CSA provides dramatic improvements
over traditional sensor systems in both sensitivity and, even
more importantly, specificity in VCTs detection.

The simplest and most popular classification approach is lin-
ear discriminant analysis (LDA). Classical LDA, introduced in
Fisher (1936), can be formulated in the following way. Given a
training sample, Fisher’s LDA aims to find linear combinations
of all predictors that maximize the ratio of between-class vari-
ance to within-class variance; see Anderson (2003) for a review
of Fisher’s LDA. It has been shown that the performance of
Fisher’s LDA and its variants is comparable to that of many ad-
vanced classification methods in a variety of settings; see chap. 4
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MDA WITH APPLICATION TO CSA DATA 525

Figure 1. Difference maps for colorimetric sensor arrays. Panel A illustrates the calculation of a difference map, generated by digital
subtraction at pixel level. The before and after exposure images are subtracted to form the difference map. Differences in each of red, green,
and blue are averaged over each circle and stored in a 36 × 3 matrix, with each row corresponding to a chemo-responsive dye and each column
corresponding to one of the three colors. Plotted in Panel B are the color changes of CSA for 15 representative toxic industrial chemicals at
their IDLH (immediately dangerous to life or health) concentration after 2 min exposure. Enlargements of color changes for 2 of the 15 cases
are presented in Panel C. Three dyes shown in the red circles are chemo-responsive but discriminant-irrelevant dyes. The black regions, regions
show no color changes, are the nonchemo-responsive dyes.

of Hastie, Tibshirani, and Friedman (2009) for a review. Though
LDA has succeeded in many real applications, it is not directly
applicable to analyze our CSA data due to the following two
challenges. First, applying LDA to CSA data requires stacking
a 36 × 3 matrix to form a 108-dimensional vector, which ren-
ders Fisher’s LDA inapplicable for small (say ≤ 100) sample
application. Moreover, the rows and columns of CSA output
have different interpretations and should be treated differently
in classification analysis. Second, for some VCTs, only a small
number of dyes are discriminant relevant dyes (see Figure 1(c)).
Thus, using all dyes in classification models, like LDA, may
bring in noise and result in high misclassification errors.

To overcome the first challenge, we propose a matrix dis-
criminant analysis method (MDA), in which we project the
36 × 3 matrix into row (dye) space and column (color) space
separately. The two projections are estimated iteratively and in-
tegrated together for classification. Thus, rows and columns of
the data are treated differently. By retaining the matrix structure
of the data, MDA provides natural interpretations of the dis-
criminant directions and alleviates the curse of dimensionality.
To surmount the second challenge and improve MDA’s classi-
fication specificity, we impose a sparsity structure on dyes by

developing a penalized MDA (PMDA). PMDA reduces not only
the number of parameters in the discriminant analysis but also
misclassification errors in many applications. More importantly,
it provides further insight on which dyes are discriminant rele-
vant for certain VCTs, and can serve as a guidance for designing
the next-generation CSA.

It is worth noting that two-dimensional (2D) classification
methods have been developed in the image processing commu-
nity. The primary usage of these methods is the classification
of 2D images where the 2D refers to the two pixel coordi-
nates. The 2D-LDA that was proposed in Li and Yuan (2005) is
one of the popular works in the 2D classification literature. To
use the matrix structure, 2D-LDA seeks d linear discriminant
directions that can maximize the trace of the between-group
variation over the trace of the within-group variance. Though
2D-LDA incorporates the matrix structure into the estimation of
the discriminant directions, as pointed out by Zheng, Lai, and
Li (2008), 2D-LDA ignores the between-row correlations in the
matrix observations. Ignoring between-row correlations leads to
substantially higher misclassification errors than Fisher’s LDA,
when the rows are correlated (Zheng, Lai, and Li 2008). In our
CSA data, some of the chemical responsive dyes have similar
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526 WENXUAN ZHONG AND KENNETH S. SUSLICK

chemical structures, such as the PH indicators that respond to
Brønsted acidity/basicity. Thus, the rows of the CSA observa-
tions are correlated with each other, which renders the 2D-LDA
approach inapplicable. Moreover, similar to many other 2D-
discriminant methods developed in the image processing com-
munity, 2D-LDA assumes that results produced by using the
original images and the rotated images are the same. This as-
sumption is referred to as the rotation-invariant property (sec.
3.7.2 in Gonzales and Woods 2002). This rotation-invariant
property does not hold for our CSA data, in which rows rep-
resent the chemical responsive dyes and columns represent the
spectral components on the color space. Thus, we need a 2D
classification method that can treat the rows and columns dif-
ferently.

Our MDA method is also related to the dimension folding
sliced inverse regression method (Li, Kim, and Altman 2009),
which is proposed for effectively reducing the dimensionality
of the matrix predictors in regression. However, different from
the dimension folding method, our primary goal is to reduce the
misclassification error when the sample size is small. Moreover,
effective methods for imposing sparsity on the estimates in the
dimensional folding are still lacking.

The rest of the article is organized as follows. In Section
2, we briefly review the LDA method. We develop the matrix
discriminant analysis method (MDA) and present its asymptotic
properties in Section 3. In Section 4, we develop the penalized
matrix discriminant analysis method (PMDA). Simulations and
real data analysis are presented in Sections 5 and 6. A few
remarks in Section 7 conclude the article.

2. FISHER’S LINEAR DISCRIMINANT ANALYSIS
FOR p-DIMENSIONAL VECTORS

In this section, we briefly review Fisher’s LDA method to
motivate our MDA and PMDA methods. To make Fisher’s
LDA applicable to our CSA data, we can stack the columns
of the random matrix X to create a p-dimensional random vec-
tor x. Let Y ∈ {1, . . . , K} be the class label. We assume that
x|Y = k has a normal distribution with equal covariance ma-
trix for all k. Fisher’s LDA seeks a d ≤ K − 1-dimensional
projection of x with the largest between-group variation rela-
tive to within-group variation. Given d, the linear discriminant
directions, β1, . . . , βd , in Fisher’s LDA can be obtained by pro-
gressively maximizing

L(η) = η′var(E[x|Y ])η

η′var[x]η
, (1)

with respect to η under the constraints that βi and βj are or-
thogonal with respect to var[x]; see Fisher (1936). In general, d
is unknown unless you have extra structure information of the
data. A χ2 test that is described in Section 12.5 of Mardia, Kent,
and Bibby (1979) can be used to estimate d.

Observing (xi , Yi), i = 1, . . . , n, we can estimate E[x] by
its sample version x̄, where x̄ = 1

n

∑
i xi , and estimate

E[x|Y ] by its sample version Ê[x|Y ], where Ê[x|Y ] =
1
nk

∑
{i:Yi=k} xi with nk being the number of observa-

tions in group k. Similarly, var[x] can be estimated by
v̂ar[x] = 1

n

∑n
i=1(xi − x̄)(xi − x̄)′ and var[E(x|Y )] can be es-

timated by v̂ar[E(x|Y )] = ∑K
k=1

nk

n
(Ê[x|Y = k] − x̄)(Ê[x|Y =

k] − x̄)′. Replacing var[E(x|Y )] and var[x] in (1) by
v̂ar[E(x|Y )] and v̂ar[x], we can easily obtain the d estimated
Fisher’s LDA directions, β̂1, . . . , β̂d , by solving the following
linear system:

v̂ar[E(x|Y )]ηi = λi v̂ar[x]ηi, i = 1, . . . , d and λ1 ≥ λ2

≥ · · · ≥ λd > 0, η′
i v̂ar[x]ηj = I{i=j}, (2)

with respect to ηi , where I{} is the indicator function taking
value 1 if i = j and value 0 if i �= j .

With small sample size, stacking the matrix observation of
our CSA data may lead to a severe curse of dimensionality,
which refers to various difficulties a large number of variables
(or dimensions) can cause to function approximation, model
fitting, information extraction as well as to computation (Fan
and Li 2006). For example, with a typical 36-dye CSA data
that can be modeled by 36 parameters for dyes effect and 3 pa-
rameters for red, green, and blue color spectrum effect, simple
vectorization generates 36 × 3 = 108 parameters for a classi-
cal vector-based LDA. Thus, the simple vectorization renders
many vector-based approaches infeasible for a sample with less
than 108 observations. Moreover, even if we have a fairly large
sample, both the computational efficiency and the estimation
accuracy of the classical vector-based LDA will be compro-
mised by simple vectorization (Donoho and Elad 2003; Fan and
Li 2006). To alleviate the curse of dimensionality, penalization
approaches have been proposed. The regularized discriminant
analysis (RDA) method proposed by Friedman (1989) is one of
the early proposals. Instead of directly using the sample within-
group covariance matrix, a ridge penalty is employed in RDA to
stabilize the estimate. Following the same trend, Clemmensen
et al. (2011) developed sparse discriminant analysis (SDA). In
SDA, an L1 penalty is employed to obtain a sparse estimate of
the discriminant directions. Though penalization can alleviate
the curse of dimensionality to some degree, it may also generate
some bias and computational complexity in estimating the dis-
criminant directions. A method that can eliminate the bias and
achieve sparsity simultaneously, such as our MDA method, is
more attractive.

3. MATRIX DISCRIMINANT ANALYSIS FOR
r × q-DIMENSIONAL MATRICES

To retain the matrix structure of X in the CSA data, we shall
develop a matrix discriminant analysis method. To discriminate
the objects in the form of matrices, we aim to find d orthogo-
nal low-dimensional representations of X, β ′

j Xξ , j = 1, . . . , d,
which exhibit the maximum ratio of between-class variance to
within-class variance. Here, we require the d low-dimensional
representations to be orthogonal to make the representations
be identifiable and easy to interpret. In the CSA application,
each entry in βj specifies the discrimination power of a chemo-
responsive dye and each entry in ξ specifies the effect of spectral
components coded by the RGB triplets. To discriminate among
similar compounds within one chemical class, the dyes used
in CSA are the nanoporous pigments, which measure the subtle
difference between VCTs in one chemical class. As similar com-
pounds display color differences along one spectral direction on
the nanoporous pigments (Feng et al. 2010), we assume ξ resides
in a one-dimensional space. As illustrated in the case study that
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is presented in Section 6, the assumption is valid in most CSA
applications. When the effect of spectral components cannot be
summarized by a single ξ , we can generalize our method to ac-
commodate multiple ξ ’s. The generalization will be discussed
in Section 3.3. Without loss of generality, we assume that X is
an r × q matrix. Correspondingly, the βj ’s, j = 1, . . . , d are
r-dimensional vectors and the ξ is a q-dimensional vector.

3.1 Matrix Discriminant Analysis Method

Motivated by Fisher’s LDA, we aim to find d orthogonal
vectors β1, . . . ,βd and ξ that maximize the ratio of between-
class variance to within-class variance along the β ′

j Xξ , j =
1, . . . , d directions. Here, we assume that the within-group co-
variance matrices are the same. Thus, the d orthogonal vectors
β1, . . . ,βd and the vector ξ can be obtained by maximizing

L(η, θ ) = var(E[η′Xθ |Y ])

var[η′Xθ ]
(3)

with respect to η and θ . Because (3) is a bivariate quadratic func-
tion, we can find β1, . . . ,βd and ξ by iteratively maximizing
L(η, θ ).

Observing (Xi , Yi), 1 ≤ i ≤ n, for any given δ, we
use v̂ar(E[Xδ|Y ]) to denote the sample version of
var(E[Xδ|Y ]), where v̂ar(E[Xδ|Y ]) = ∑K

k=1 nk/n(Ê[Xδ|Y ] −
X̄δ)(Ê[Xδ|Y ] − X̄δ)′, and v̂ar[Xδ] to denote the sample ver-
sion of var[Xδ], where v̂ar[Xδ] = ∑n

i=1 1/n(Xiδ − X̄δ)(Xiδ −
X̄δ)′.

Given an initial estimate of ξ , denoted by ξ̂ , analogous to
Fisher’s LDA, we can obtain an estimate of β1, . . . ,βd , say
β̂1, . . . , β̂d , by solving the linear system,

v̂ar(E[Xξ̂ |Y ])ηi = λi v̂ar(Xξ̂ )ηi , i = 1, . . . , d and λ1

≥ λ2 ≥ · · · ≥ λd > 0η′
i v̂ar[Xξ̂ ]ηj = I{i=j}, (4)

with respect to ηi .
Meanwhile, fixing β at β̂1, we can obtain an estimate of ξ ,

say ξ̂ , by maximizing,

θ ′v̂ar(E[β̂
′
1X|Y ])θ

θ ′v̂ar[β̂
′
1X]θ

, (5)

with respect to θ .
Since the L(η, θ ) is bounded from above and nondecreasing

at each iteration (detailed proof is given below), we employ the
following iterative algorithm for estimating β1, . . . ,βd and ξ .
We, first, give an initial estimate of ξ . For the fixed ξ , we can
estimate the β1, . . . ,βd by solving (4). Then fixing β at β̂1, we
can estimate the ξ by maximizing (5). The two steps iterate until
convergence.

Algorithm 1 (MDA algorithm):

• Initialize ξ̂
(0)

such that ξ̂
(0)′

ξ̂
(0) = 1.

• Fixing ξ̂ at ξ̂
(0)

, solve the linear system (4) to find

β̂
(0)
1 , . . . , β̂

(0)
d .

• Iterate until L(β̂
(1)
1 , ξ̂

(1)
) converges.

• Fixing β̂ at β̂
(0)
1 , maximize (5) to find ξ̂

(1)
.

• Fixing ξ̂ at ξ̂
(1)

, solve the linear system (4) to find

β̂
(1)
1 , . . . , β̂

(1)
d .

• Update ξ̂
(0)

by ξ̂
(1)

and β̂
(0)
1 by β̂

(1)
1 and calculate

L(β̂
(1)
1 , ξ̂

(1)
).

• Output final estimates β̂
(1)
j for j = 1, . . . , d and ξ̂

(1)
.

In the following, we show that Algorithm 1 converges. Given

ξ̂
(0)

, since β̂
(0)
1 is the solution of (4), it follows that for any η,

η′v̂ar(E[Xξ̂
(0)|Y ])η

η′v̂ar(Xξ̂
(0)

)η
≤ β̂

(0)′

1 v̂ar(E[Xξ̂
(0)|Y ])β̂

(0)
1

β̂
(0)′

1 v̂ar(Xξ̂
(0)

)β̂
(0)
1

= ξ̂
(0)′

v̂ar(E[β̂
(0)′

1 X|Y ])ξ̂
(0)

ξ̂
(0)′

v̂ar(β̂
(0)′

1 X)ξ̂
(0) . (6)

On the other hand, given β̂
(0)
1 , since ξ̂

(1)
is the solution of (5), it

follows that for any θ ,

θ ′v̂ar(E[β̂
(0)′

1 X|Y ])θ

θ ′v̂ar(β̂
(0)′

1 X)θ
≤ ξ̂

(1)′
v̂ar(E[β̂

(0)′

1 X|Y ])ξ̂
(1)

ξ̂
(1)′

v̂ar(β̂
(0)′

1 X)ξ̂
(1) .

Thus, we have

ξ̂
(0)′

v̂ar(E[β̂
(0)′

1 X|Y ])ξ̂
(0)

ξ̂
(0)′

v̂ar(β̂
(0)′

1 X)ξ̂
(0) ≤ ξ̂

(1)′
v̂ar(E[β̂

(0)′

1 X|Y ])ξ̂
(1)

ξ̂
(1)′

pv̂ar(β̂
(0)′

1 X)ξ̂
(1) . (7)

Now given ξ̂
(1)

, similar to the derivation of (6), we have

ξ̂
(1)′

v̂ar(E[β̂
(0)′

1 X|Y ])ξ̂
(1)
1

ξ̂
(1)′

v̂ar(β̂
(0)′

1 X)ξ̂
(1) ≤ β̂

(1)′

1 v̂ar(E[Xξ̂
(1)|Y ])β̂

(1)
1

β̂
(1)′

1 v̂ar(Xξ̂
(1)

)β̂
(1)
1

, (8)

since β̂
(1)
1 is the solution of (4) at ξ̂ = ξ̂

(1)
1 . Combining (7) and

(8), we have

ξ̂
(0)′

v̂ar(E[β̂
(0)′

1 X|Y ])ξ̂
(0)

ξ̂
(0)′

v̂ar(β̂
(0)′

1 X)ξ̂
(0) ≤ ξ̂

(1)′
1 v̂ar(E[β̂

(0)′

1 X|Y ])ξ̂
(1)

ξ̂
(1)′

v̂ar(β̂
(0)′

1 X)ξ̂
(1)

≤ β̂
(1)′

1 v̂ar(E[Xξ̂
(1)|Y ])β̂

(1)
1

β̂
(1)′

1 v̂ar(Xξ̂
(1)

)β̂
(1)
1

. (9)

Meanwhile, L(η, θ ) is bounded above since var[η′Xθ ] =
var[E[η′Xθ |Y ]] + E[var[η′Xθ |Y ]]. Ensuring that the

L(β̂
(1)
1 , ξ̂

(1)
) is increasing in each iteration, convergence

of ξ̂
(1)

is guaranteed. Then, convergence of β̂
(1)
i is also

guaranteed.
Although Algorithm 1 is a powerful tool for high-dimensional

classification, like other iterative algorithms, the iteration may
reach a local rather than the global maximum of target function
L(η, θ ) in practice. To avoid being stuck at a local optimum, we

uniformly sample multiple ξ̂
(0)

’s on R as the initial value and
choose the discriminant rule that gives the smallest misclassifi-
cation errors.

3.2 Theoretical Properties

We now show that MDA yields consistent estimators of
β1, . . . ,βd if ξ (0) is reasonably close to the true ξ .
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Theorem 1. Given Y1, . . . , Yn, we assume that X1, . . . , Xn ∈
Rr×q are independent and identically distributed random ma-
trices with each entry having finite mean, variance, and fourth
moment. Let β1, . . . ,βd and ξ be the maximizer of (3) and
β

(1)
j be the output of Algorithm 1. If ξ (0) in Algorithm 1 is a√
n consistent estimator of ξ , we have that

β
(1)
j → βj

in probability as nk → ∞ for k = 1, . . . , K .
The proof of Theorem 1 is sketched as follows.

Since ξ̂
(0)

is a
√

n consistent estimator of ξ , we have

var[E(Xξ̂
(0)|Y )] = var[E(Xξ |Y )] + O(1/n) and var[Xξ̂

(0)
] =

var[Xξ ] + O(1/n). Meanwhile, using the Tchebycheff inequal-

ity, we can show that v̂ar[E(Xξ̂
(0)|Y )] = var[E(Xξ̂

(0)|Y )] +
O(1/n) and v̂ar[Xξ̂

(0)
] = var[Xξ̂

(0)
] + O(1/n). Thus, we

have that v̂ar[E(Xξ̂
(0)|Y )] = var[E(Xξ |Y )] + O(1/n) and

v̂ar−1[Xξ̂
(0)

] = var−1[Xξ ] + O(1/n). These facts imply that

η′v̂ar[E(Xξ̂
(0)|Y )]η

η′v̂ar[Xξ̂
(0)

]η′
→ η′var[E(Xξ |Y )]η

η′var[Xξ ]η′ .

By the perturbation theory of matrix eigenvectors, for example,
Stewart and Sun (1990), the conclusion follows immediately.

Similarly, we can show that ξ̂
(1)

is a consistent estimator of

ξ , if β̂
(0)
1 is a consistent estimator of β1.

Theorem 2. Given Y1, . . . , Yn, we assume that X1, . . . , Xn ∈
Rr×q are independent and identically distributed random ma-
trices with each entry having finite mean, variance, and fourth
moment. Let β1, . . . ,βd and ξ be the maximizer of (3) and

ξ̂
(1)

be the output of Algorithm 1. If β̂
(0)
1 in Algorithm 1 is a√

n consistent estimator of β1, we have that

ξ̂
(1) → ξ

in probability as nk → ∞ for k = 1, . . . , K .

The conclusion of Theorem 2 follows immediately from The-

orem 1. Theorem 1 and 2 imply that ξ̂
(1)

and β̂
(1)
1 , . . . , β̂

(1)
d are

consistent estimators when ξ̂
(0)

and β̂
(0)
1 , . . . , β̂

(0)
d iterates to a

small neighborhood of the true parameters. It is worth noting

that Theorem 2 still holds if we replace β̂
(0)
1 in Theorem 2 by

any one of β̂
(0)
2 to β̂

(0)
d . We opt to use β̂

(0)
1 in Algorithm 1 to es-

timation ξ because β̂
(0)
1 is more efficient than any one of β̂

(0)
2 to

β̂
(0)
d (Mardia, Kent, and Bibby 1979).

3.3 Matrix Discriminant Analysis for Multiple ξ’s

Now, we consider a slightly more general case that there are
multiple classification relevant ξ ’s, say ξ 1, . . . , ξ c. Algorithm 1
can be generalized to the applications with multiple ξ ’s using a

two-step strategy. In the first step, we obtain β̂
(1)
1 , . . . , β̂

(1)
d us-

ing Algorithm 1. In the second step, we obtain estimates of

ξ̂
(1)
1 , . . . , ξ̂

(1)
c by solving the following linear system

v̂ar(E[β̂
(1)′

1 X|Y ])θ i = νi v̂ar[β̂
(1)′

1 X]θ i ,

ν1 ≥ ν2 ≥ · · · ≥ νc > 0

θ ′
i v̂ar[β̂

(1)′

1 X]θ j = I{i=j}, (10)

where i = 1, . . . , c. As with Algorithm 1, convergence is guar-
anteed since no iteration is used in the second step of the gen-

eralized Algorithm 1. Theorems 1 and 2 imply that β̂
(1)
1 and

ξ̂
(1)
1 converge asymptotically to β1 and ξ 1. As ξ̂

(1)
1 is a consistent

estimator of ξ 1, we can further show by Theorem 1 that β̂
(1)
j is

also a consistent estimator of βj for j = 2, . . . , d. Similarly,

we can show that ξ̂
(1)
i is a consistent estimator of ξ i , where

i = 2, . . . , c.

4. PENALIZED MATRIX DISCRIMINANT ANALYSIS

As shown in Figure 1(c), not all dyes in CSA are chemo-
responsive to decylamine and sec-Bu2amine. Some dyes do
not change color and appear as black in the color difference
map. Among the chemo-responsive dyes, some dyes, such
as the dyes in circles in Figure 1(c), are classification irrel-
evant. Building classification rules using nonreponsive dyes
and discriminant-irrelevant dyes can reduce classification ac-
curacy. To surmount this challenge, we shall shrink the effect of
discriminant-irrelevant dyes and keep the discriminant relevant
dyes in the classification analysis. This goal can be achieved
by penalizing the L1 norm of the parameters that specify the
dye effect in MDA method (Tibshirani 1996). In this section,
we develop the penalized matrix discriminant analysis (PMDA)
method to serve this purpose.

Let β̂
∗
j be the penalized estimate of βj . Given ξ̂ , an MDA

estimate of ξ , β̂
∗
1 can be obtained by maximizing

η′v̂ar[E(Xξ̂ |Y )]η

η′v̂ar[Xξ̂ ]η
subject to ||η||1 ≤ ρ (11)

over η, where || · ||α denotes the Lα norm. When ρ = ∞, the
maximizer of (11) is the same as β̂1 in MDA, and when ρ =
0, the discriminant effects of all dyes are shrunken to zero.
In reality, we need to choose an appropriate ρ such that only
the discriminant-relevant dyes are included in the discriminant
analysis.

Maximizing (11) is equivalent to solving a generalized eigen-
value problem (Zou, Hastie, and Tibshirani 2006; Qiao, Zhou,
and Huang 2009), which can be further converted to a least-
square problem. Following Theorems 2 and 3 in Zou, Hastie,
and Tibshirani (2006) and Theorem 1 in Qiao, Zhou, and Huang
(2009), we reformulate (11) as a least-square-type of problem.
Let

Z = (
√

n1/n(Ê[Xξ̂ |Y = 1] − Ê[Xξ̂ ]), . . . ,
√

nK/n(Ê[Xξ̂ |Y
= K] − Ê[Xξ̂ ]))′

so that v̂ar[E(Xξ̂ |Y )] = Z′Z. Let R′R be the Cholesky decom-
position of v̂ar[Xξ̂ ], where R ∈ Rp×p is an upper triangular
matrix. Given two nonnegative tuning parameters ω1, ω2, we
can find β̂

∗
1 by minimizing

||ZR−1α1 − Zβ1||22 + ω1β
′
1v̂ar[Xξ̂ ]β1 + ω2||β1||1, (12)

with respect to α1 and β1, where α1 satisfies the condition
||α1||2 = 1. Here α1 was created only for the purpose of com-
putational convenience. See Zou, Hastie, and Tibshirani (2006)
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and Qiao, Zhou, and Huang (2009) for a detailed explanation of
the reformulation.

When there are d classification directions, we let B =
(β1, . . . ,βd ) and A = (α1, . . . ,αd ). Let B̂∗ = (β̂

∗
1, . . . , β̂

∗
d ) and

Â = (α̂1, . . . , α̂d ) be their estimates. Then B̂∗ can be obtained
by minimizing

d∑
j=1

{||ZR−1αj − Zβj ||2 + ω1β
′
j v̂ar[Xξ̂ ]βj + ω2j ||βj ||1}

(13)

subject to A′A = Id . Whereas the same ω1 is used for all d
directions, different ω2j are allowed to penalize different dis-
criminant directions.

Numerically, B̂∗ can be obtained by iteratively minimizing
(13) with respect to A and then B. We first estimate B given
A = Â. Let Ỹj = ZR−1α̂j . B̂∗ can be obtained by solving d
independent LASSO problems

min
βj

||Ỹj − Zβj ||22 + ω1β
′
j v̂ar[Xξ̂ ]βj + ω2j ||βj ||1, (14)

for 1 ≤ j ≤ d. In practice, we can use either the least angle
regression (Efron et al. 2004) or coordinate descent method
(Friedman, Hastie, and Tibshirani 2010) to estimate B. We then
replace B by the B̂∗ obtained in previous step and estimate A.
Because the two penalty terms are positive and do not involve
A at all, minimizing (13) is equivalent to minimizing

d∑
j=1

||Zβ̂
∗
1 − ZR−1αj ||2, (15)

subject to A′A = Id . Because of the orthogonality constraint,
(15) is not a least-square problem but a Procrustes prob-
lem (Gower and Dijksterhuis 2004). The solution can be
obtained by computing a singular value decomposition on
R−1(Z′Z)B̂∗ (Zou, Hastie, and Tibshirani 2006; Qiao, Zhou,
and Huang 2009). Let UDV′ be the singular value decomposi-
tion of R−1(Z′Z)B̂∗, we have that Â = UV′. The PMDA method
is outlined in the following algorithm.

Algorithm 2 (PMDA algorithm):

• Run algorithm 1 to obtain ξ̂ .
• Initialize A by Â such that Â′Â = Id , where Id is a d ×

d identity matrix.
• Iterate until convergence.

• Find B̂∗ by optimizing d -independent penalized least-
square functions (14).

• Replace B by B̂∗ and perform the singular value decom-
position UDV′ for R−1(Z′Z)B̂∗.

• Update A by UV′.
• Output final estimates B̂∗.

In Algorithm 2, we estimate βj by optimizing d-independent
penalized least-square functions. An alternative approach is that,
instead of d-independent L1 penalties, we can use a group
penalty, for example,

∑K
i=1 ||Bi ||2, where Bi represents the ith

row of B. By using the group penalty, we can select a subset
of dyes that are discriminant-relevant across all discriminant di-
rections. We opt to choose the d-independent L1 penalties for
the CSA data because we expect to use different sets of dyes for

different discriminant directions. As we will see in the real data
analysis, different discriminant directions with different sets of
dyes represent different chemical interactions.

The key to the success of method is the selection of the tun-
ing parameters. There are two tuning parameters ω1 and ω2j in-
volved in the optimization of (13). It was shown in Zou et al.
(2006) and Qiao, Zhou, and Huang (2009) that the optimizer is
independent of the selection of ω1 when ω2j = 0 (no penalty at
all). When ω2j �= 0, the optimization of (13) may be affected
by the value of ω1. However, our extensive simulations suggest
that the minimizer of (13) is robust as ω1 varies in a wide range
in (0.01, 1000). Thus, to alleviate the computational cost, we
set ω1 = 1 in our numerical studies. In practice, we select the
tuning parameter ω2j by minimizing a K-fold cross-validation
(CV) of the misclassification error. Because our CSA data has
less than 10 observations in each group in general, we randomly
partition the sample under the constraint that each class has at
least one observation in the training sample, and at least one
observation in the test sample. The CV misclassification error is
calculated as the average of the misclassification errors in those
test samples.

5. SIMULATION STUDIES

To assess the performance of the proposed methods, we carry
out extensive analysis on simulated datasets.

5.1 Multiple-Class Discrimination

This simulation is designed to demonstrate the empirical
performance of MDA and PMDA methods in discriminating
multiple-class observations. We generated 100 datasets from
the following model. Let Y be the class label simulated from
a multinomial distribution with four classes. We assume the
probability of occurrence in each class equal to π0 = 0.25. Let
X = (xi,j ) be a 36 × 3 random matrix predictor. The conditional
distribution of X given Y is simulated from a multivariate normal
distribution with conditional mean

E[X|Y = 1] =
(

μA 0

0 0

)
36×3

, E[X|Y = 2] =
(

−μA 0

0 0

)
36×3

,

E[X|Y = 3] =
(

0 0

μA 0

)
36×3

, E[X|Y = 4] =
(

0 0

−μA 0

)
36×3

,

where A = 11′ and 1 = (1, 1)′, and conditional variance

var(xi,j |Y = k) = σ 2 (i, j ) = (1, 2) or (2, 1),

var(xi,j |Y = k) = 1 (i, j ) �= (1, 2) and (2, 1),

where k = 1, . . . , 4. We also set cov(xi,j , xi ′,j ′ ) = 0 if (i, j ) �=
(i ′, j ′).

Each dataset consists of a training sample of sample size
m1 and a test sample of sample size m2.

We apply Fisher’s LDA, MDA, and PMDA to the training
sample.

We then apply the models learned from the training sample to
the test sample and calculated the misclassification error rate. As
a benchmark, we also calculate Bayes’ misclassification error
and the optimal misclassification error that we can have by
assuming all the parameters are known.
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Table 1. Each entry reports the mean and standard deviation (in parentheses) of
the misclassification error calculated based on the 100 test samples

π0 = 0.25

μ = 3, σ 2 = 3 μ = 1.5, σ 2 = 3 μ = 1.5, σ 2 = 3
Methods m1 = 120, m2 = 500 m1 = 120, m2 = 500 m1 = 200, m2 = 500

Bayes 0.000 (0.000) 0.015 (0.006) 0.014 (0.005)
Fisher’s LDA 0.186 (0.069) 0.468 (0.060) 0.126 (0.020)
MDA 0.010 (0.018) 0.168 (0.060) 0.110 (0.032)
PMDA 0.003 (0.008) 0.093 (0.053) 0.071 (0.023)

The misclassification error for each method is summarized in
Table 1.

We see that MDA and PMDA have substantially lower mis-
classification error rates than Fisher’s LDA.

This suggests that incorporating the matrix structure of the
predictors and reducing the number of parameters are very im-
portant in the multiple class discriminant analysis. The PMDA
misclassification error is very close to the Bayes’ misclassifica-
tion error. In Figure 2, we project the observations onto the first

two Fisher’s LDA, MDA, and PMDA directions. It is easy to see
that the first two Fisher’s LDA directions lead to unsatisfactory
classification result for the test sample, though the clusters are
tight in the training sample. In contrast, the first two MDA direc-
tions result in relatively scattered clusters in the training sample,
but a much better classification results in the test sample.

Figure 2 also indicates that PMDA has better discrimination
than MDA in the test sample. To understand why PMDA
outperforms MDA, we illustrated in Figure 3 the test sample
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Figure 2. The upper panels show a training sample projected on the first two Fisher’s LDA, MDA, and PMDA discriminant directions. The
lower panels show the corresponding test sample projected on the first two Fisher’s LDA, MDA, and PMDA discriminant directions. The sample
was generated from the four-class model in Section 5.1 with μ = 3, σ 2 = 3, m1 = 120, and m2 = 500. The MDA and PMDA discriminant

directions are calculated using β̂
(1)′
j Xξ̂

(1)
for j = 1, 2, respectively.
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Figure 3. The misclassification error versus the number of predic-
tors used in PMDA method. The predictors are selected by changing
the ω2j in (14). The middle line is the average misclassification error
for each corresponding number of predictors and the upper and lower
lines are the average misclassification error ±2× standard error. The
sample was generated from the four-class model in Section 5.2 with
μ = 3, σ 2 = 3, m1 = 120, and m2 = 500.

misclassification error for PMDA as ω2j in (14) varies. We
plotted in Figure 3 the CV of the misclassification error
against the change of the number of predictors. The predictors
are selected by changing ω2j in (14). The misclassification
error drops quickly as we increase the number of predictors,
reaches the minimum when the number of predictors is 4,
which is the number of discriminant-relevant predictors in
this simulation (recall that, the four discriminant-relevant
predictors are the first, the second, the 35th, and the 36th
predictors). Misclassification error increases as we include
more predictors in PMDA analysis. This suggests that including
more discriminant-irrelevant predictors in discriminant analysis
increases the misclassification error, and thus, PMDA has the
edge over MDA and LDA in terms of misclassification error.

5.2 Comparison With Other Methods

This simulation is designed to compare the empirical per-
formance of MDA and PMDA methods with other competing
methods. We simulated 100 datasets from the following model.
Let Y be the class label generated from a Bernoulli distribu-
tion with success probability 0.5. Let X = (u1, u2, u3), where
ui ∈ R36 and ui given Y are generated from the following pro-
cess:

u1|Y = k ∼ N(036×3, 1), 1 = (σij ), σij = 0.5|i−j |,

u2|Y = k ∼ N(|u1| − 0.3(k + 1), 2), 2 = 0.5I36×36,

u3|Y = k ∼ N(036×3, 3), 3 = I36×36,

where |u1| is a vector with each entry as the absolute value of
corresponding entry of u1. In this setting, u3 does not have any
discriminant power between two classes, but u1 and u2 together
have discriminant power. In each dataset, we randomly gener-
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Figure 4. The boxplots of misclassification error of PMDA, MDA,
Fisher’s LDA, regularized discriminant analysis (RDA), sparse dis-
criminant analysis (SDA), and 2D-LDA.

ated a training sample of 120 observations and a test sample of
500 observations.

We apply MDA and PMDA to the training sample. For com-
parison, we also apply to the data the following competing
methods: 2D-LDA (Li and Yuan 2005), regularized discrimi-
nant analysis (Friedman 1989), Fisher’s LDA, sparse discrimi-
nant analysis (Clemmensen et al. 2011). In particular, we use the
R implementation lda for Fisher’s LDA, klaR for regularized
discriminant analysis, and sparseLDA for sparse discriminant
analysis. We implemented 2D-LDA, because the code is not
available from the authors. For klaR, sparseLDA, the regular-
ization parameters are chosen by cross-validation. When more
than one regularization parameter is required, such as RDA, a
grid search method is used. We then apply the models learned
from the training sample to the test sample and calculate the
misclassification error rate. The boxplots of misclassification
errors are plotted in Figure 4.

We can see that PMDA has the smallest misclassification er-
ror, and MDA has slightly larger misclassification error. Both
PMDA and MDA have smaller misclassification error than other
competing methods. As expected, LDA gives larger misclassifi-
cation, and adding regularization, that is, RDA and sparse LDA,
reduces the misclassification error. Since the 2D-LDA does not
take into account the between-row correlation, we can see the
2D-LDA has slightly larger misclassification error than LDA.
Since RDA is a compromise between linear and quadratic dis-
criminant analysis and provides a nonlinear discriminant bound-
ary, its misclassification error is low relative to other linear dis-
criminant methods.

6. CASE STUDIES

6.1 Classification of CSA Data After Exposure to TICs
at IDLH Concentrations

A series of CSA experiments for 147 chemicals were con-
ducted with the aim to classify these chemicals into either non-
toxic or one of 20 toxic industrial chemicals (TICs). These
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Table 2. The list of toxic industrial chemicals (TICs) at their immediately dangerous to life of health (IDLH) and permissible exposure level
(PEL) concentrations in ppm

TIC IDLH PEL Symbol TIC IDLH PEL Symbol

Ammonia 300 50 ⊕ Hydrogen sulfide 100 20 �
Arsine 3 0.05 © Hydrazine 50 1 •
Chlorine 10 1 � Methylamine 100 10 ∗
Diborane 15 0.1 + Methyl hydrazine 20 0.2 �
Dimethylamine 500 10 � Nitric acid 25 2 �
Fluorine 25 0.1

⊗
Nitrogen dioxide 20 5 �∨

Formaldehyde 20 0.75 � Phosgene 2 0.1 �
Hydrogen chloride 50 5 �� Phosphine 50 0.3 ×
Hydrogen cyanide 50 10 � Sulfur dioxide 100 5 �
Hydrogen fluoride 30 3 � Trimethylamine 200 10 ♦+

20 TICs are listed as “High Hazard TICs” on the NATO In-
ternational Task Force 25 and are summarized in Table 2. The
experiments consist of seven chemicals in the nontoxic class
and in each of the 20 TICs classes. The color changes of all
36 dyes in CSA were measured and recorded as RGB triplets
before and 2 min after exposure to TICs at their concentrations
that are Immediately Dangerous to Life or Health (IDLH). The
primary interest is to assess the prediction accuracy using the
CSA and build classification rules that can be used to monitor
the chemical exposure in workplaces.

First, we apply MDA to the difference map of 147 chemicals.
To do that, we need to determine whether the single ξ can sum-
marize the spectral component effect of RGB colors. Following
the algorithm in Section 3.3, we calculate the ratios of between-
group variation to within-group variation for three ξ ’s, where
ξ 1 accounts for 96.35% of all the variation, ξ 2 accounts for
3.23%, and ξ 3 for 0.41%. We thus opt to keep a single ξ for the
rest of the analysis. The 147 chemicals are projected on the first
two MDA directions and the projection is plotted in Figure 5(a).
It is easy to see that the two MDA discriminant directions are not
adequate to make a clear classification for some closely related
chemicals even though some chemicals with different chemical
structures can be well discriminated. To determine the number
of classification relevant directions, a classic F test is employed

(Kshirsagar 1972, sec. 6.3) to test the null hypothesis that there
are d classification relevant directions against the alternative
hypothesis that there are more than d classification relevant di-
rections. Eight classification relevant directions are identified at
0.005 significance level. We then check the coefficients of each
dye to interpret the effect of each dye in the classification analy-
sis. The dyes with large coefficients in the first two directions are
those that tend to be active on the van der Waals interactions. The
van der Waals interactions are commonly used in traditional sen-
sors for simple chemical structure detection. Whereas the dyes
with large coefficients in the other six directions are those that
respond to intermolecular interactions between the nanoporous
pigments and the VCTs. This suggests that those dyes that react
to the intermolecular interactions are important to discriminate
the toxicants with complicated chemical structures. This also
supports the design of the current CSA, which provides a much
wider range of chemical interactions than traditional sensors.

To compare the empirical performance of Fisher’s LDA,
MDA, and PMDA methods on this dataset, we calculate the
misclassification error using seven-fold CV. To keep the bal-
ance between classes, we randomly select one observation
from each class to form the test sample and use the rest of
observations as the training sample. Plotted in Figure 5(b) is the
CV of misclassification error with its standard error against the

Figure 5. Panel (a) shows the CSA data of the 147 VCTs projected on the first two MDA directions. Panel (b) is the seven-fold CV
misclassification error versus the number of discriminant directions used in the classifications.
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Figure 6. Plotted in (a) is the misclassification error calculated at different number of discriminant directions for CSA data at PEL concen-
trations. Plotted in (b) is the misclassification error of PMDA for d = 13 calculated using different number of dyes.

number of directions. The plot shows that, for all the three meth-
ods, the misclassification errors decrease drastically as we in-
crease the number of discriminant directions up to eight. We also
see that MDA method and PMDA method outperform Fisher’s
LDA method uniformly in reducing the misclassification error.
Moreover, there is no significant difference of the misclassifi-
cation error between MDA and PMDA methods. This is well
expected since the design of the CSA is highly optimized to
ensure that all dyes respond to TICs at the IDHL concentration.
Thus, shrinking the number of dyes in MDA cannot significantly
improve the discrimination accuracy. Finally, it is worth point-
ing out that with 147 observations and 21 classes the standard
errors of misclassification error for PMDA method are small.

6.2 Classification of the CSA Data After Exposure to
the TICs at PEL Concentrations

A pressing need for the environmental control of industrial
chemical workplace and more general epidemiological studies
is to accurately monitor low concentrations of TICs because
multiple low-level exposures to the TICs may cause extremely
serious effects on an individual’s health. Thus, 147 difference
maps were obtained for the 20 TICs (Table 2) at their Permissible
Exposure Level (PEL) before and after 5 minute exposure.

Compared to the IDLH concentrations used in the previous
example, only a limited number of dyes show significant color
change at the PEL concentration. Many dyes do not respond at
this concentrations. This gives a significant advantage to PMDA,
which assumes the sparseness of underlying classification func-
tions.

We apply Fisher’s LDA, MDA, and PMDA to the PEL data.
For each of the three methods, we calculate misclassification
errors using seven-fold CV for different number of discriminant
directions. The result is plotted in Figure 6(a). We can see that
PMDA consistently outperforms the other two methods and
the optimal classification can be achieved using 13 directions.
We further plot in Figure 6(b) the classification error along
the change of the number of classification relevant dyes using

the 13 directions. It is easy to see that the misclassification is
minimized using 15 classification relevant dyes.

To further understand the performance of PMDA, we choose
three TICs in one training sample and project them on the first
two directions obtained by MDA and PMDA, respectively, in
Figure 7. We can clearly see that PMDA can better discriminate
the three TICs than MDA in both training and test samples. It
suggests that imposing sparsity structure can further improve
the classification accuracy if the underlying classification rule
is indeed sparse.

7. DISCUSSION

In this article, we developed a simple and efficient matrix clas-
sification method named MDA to improve the classification sen-
sitivity and specificity of colorimetric sensor array (CSA) data.
Our MDA method can be viewed as an extension of Fisher’s
LDA to the data in the form of matrices. By retaining the matrix
structure of the data, MDA can substantially reduce the misclas-
sification error of chemicals that belong to the same chemical
class. For general matrix classification with multiple discrim-
inant relevant linear combinations on both rows and columns,
we generalized MDA method with a one-step extension. The
generalization of MDA algorithm (Section 3.3) is fast and easy
to implement. However, it may lose classification relevant direc-
tions. The method that can pick up all the classification relevant
directions is under study and will be introduced in a follow-up
publication.

To further reduce the misclassification error, we proposed
PMDA method by imposing a sparse structure on discriminat-
ing functions using L1 penalty. Numerical studies suggest that
MDA and PMDA outperform many competing linear classifi-
cation methods. A potential improvement on MDA and PMDA
methods is to extend them to nonlinear discriminant analysis
by using appropriate kernel functions. In that case, we may
need fewer discriminant directions than MDA and PMDA in
discriminating matrix data. A potential drawback of using the
nonlinear discriminant analysis is that we may lose the model
interpretability.
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Figure 7. (a) The CSA data of chlorine (CL2), formaldehyde (F2), and nitric Acid (HNO) projected on the first two MDA discriminant
directions. (b) The same data projected on the first two PMDA discriminant directions. The test sample is circled.

An R code implementing MDA and PMDA methods is pro-
vided in the supplementary material.

SUPPLEMENTARY MATERIALS

R code and datasets: The R codes and data files can be
downloaded as a zip file.
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