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Tensor is a multiway array. With the rapid development of science and technology
in the past decades, large amount of tensor observations are routinely collected,
processed, and stored in many scientific researches and commercial activities
nowadays. The colorimetric sensor array (CSA) data is such an example. Driven
by the need to address data analysis challenges that arise in CSA data, we
propose a tensor dimension reduction model, a model assuming the nonlinear
dependence between a response and a projection of all the tensor predictors.
The tensor dimension reduction models are estimated in a sequential iterative
fashion. The proposed method is applied to a CSA data collected for 150 pathogenic
bacteria coming from 10 bacterial species and 14 bacteria from one control
species. Empirical performance demonstrates that our proposed method can
greatly improve the sensitivity and specificity of the CSA technique. © 2015 Wiley
Periodicals, Inc.
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INTRODUCTION

Tensor data analysis has a long history in social
and behavioral sciences, and is now becoming a

burgeoning research area in numerous other scientific
disciplines, including life science, econometrics, chem-
istry as well as image and signal processing.1,2 With
the rapid development of image technology, the usage
of tensor variate in quantitative models is becoming
more and more popular. For example, tensor has been
extensively used in understanding human brain’s func-
tional mechanism using fMRI technique.3

In general, a color image can be naturally digi-
talized as a random matrix (second-order tensor) with
each row corresponding to a pixel’s three color coordi-
nates on Red Green and Blue axises where their values
range from 0 to +255. When multiple replicates of a
random matrix are observed, such as the EEG example
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used in Refs 4, 5, we can use the matrix observations
for image classification and regression.

Though tensor analysis is more and more impor-
tant, research on this area is still lacking due to the
intrinsic mathematical complications. For example,
tensor is not invariant under rotations, and spectral
decomposition for a tensor has not been well estab-
lished mathematically. The existing analytical models
largely ignore the two-way tensor structure by sim-
ply vectorizing each 2-way observation into a vector
and offering solutions using the vector-based statis-
tical methods, such as linear regression analysis and
linear discriminant analysis (LDA).6 These solutions,
however, are far from satisfactory. First, the simple
vectorization destroys the original design information
and leads to interpretation difficulties. Second, the
simple vectorization significantly aggravates the curse
of dimensionality, which refers to various difficulties
a large number of variables (or dimensions) can cause
to function approximation, model fitting, information
extraction as well as to computation. For example,
simple vectorization of a 36× 3 matrix can gener-
ate 108 parameters for a conventional linear regres-
sion model, which renders the classical least square
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approach inappropriate for data with small sample
size. Moreover, even if we have fairly large sample
size, both the computational efficiency and the estima-
tion accuracy of the classical vector-based analysis will
be compromised by simple vectorization. There is an
obvious pressing need for new statistical methods that
can be used to incorporate intrinsic tensor structure.

Regression analysis is probably the most popular
statistical tool for modeling the relationship between
a response Y and a series of predictor variables X. In
general, regression can be considered as an inference
about the conditional distribution of Y given X, often
with the mean response E(Y|X) of particular interest.
When X is a vector, various models and methods
have been developed for regression analysis in the
literature, ranging from classic linear regression to
nonparametric regression. Among the large amount
of literatures, there is a popular class of regression
models, which assume that the response only depends
on a lower dimensional projection of the predictors.
To identify the lower dimensional projection is clearly
critical in regression. A wide range of methods have
been proposed to facilitate the estimation of the
projection in the literature. For linear regression,
two examples are principal component regression7

and partial least squares regression,8 both of which
regress Y on some selected linear combinations of
X (or components). For nonparametric regression,
some examples include projection pursuit regression,9

generalized additive models,10 multivariate adaptive
regression splines11 and sufficient dimension reduction
regression.12 These methods use lower dimensional
functions to approximate the relationship between
Y and X. In this article, we follow the approach of
sufficient dimension reduction and generalize our
recent work on tensor classification13 to tensor suf-
ficient dimension reduction. Our proposed method
is different from the dimension folding method as
defined in Ref 4 or a modified version of it called
tensor sliced inverse regression as defined in Ref 5.
The previous mentioned methods target on a space
that is larger than the dimension reduction subspace
that is defined in our model.

MODEL DESCRIPTION

Sufficient Dimension Reduction
in Vector Space
Let us first consider the vector-based dimension reduc-
tion model in ℝp. The generalization of the model to
the tensor variates will be discussed later. Let X∈ℝp

be a random vector and Y ∈ℝ be a random scalar.
Suppose S is a subspace of ℝp and PS is the projection

operator fromℝp to S in the standard inner product. If

Y⊥X|PSX, (1)

where ⊥ means ‘independent of’, then it is said that
PSX is sufficient for the dependence of Y on X. In other
words, the projection PSX captures all the information
contained in X regarding Y. Model (1) was formally
proposed by Ref 14 and was further discussed by
Refs 12, 15. Model (1) is equivalent to several other
formulations, such as the general index model

Y = h
(
𝛽𝜏1X, · · · , 𝛽𝜏

d
X, 𝜀

)
, (2)

that was proposed in Ref 16. Here h is an unknown
function, 𝛽 i’s are p -dimensional vectors of unit length,
d is an integer less than p, 𝜏 denotes transpose, 𝜀 is
independent of X and E (𝜀)=0. Given (𝛽𝜏1X, · · ·, 𝛽𝜏

d
X),

Y and X are independent, therefore the subspace
spanned by 𝛽 i’s can serve as the subspace in model
(1). Conversely, if (1) holds, then there exist h and 𝜀
such that (2) holds. A brief proof of the equivalence
between the two models can be found in Ref 17.

Models (1) and (2) are referred to as the
dimension reduction regression (DR) model and S
is referred to as a dimension reduction subspace.
Dimension reduction subspace may not be unique.
Cook15 introduced an important concept called cen-
tral space, which is defined as the intersection of all
dimension reduction subspaces when it is a dimension
reduction subspace itself. The central subspace is
denoted by SY|X, and the dimension of SY|X is called
the structural dimension of regressing Y on X. Under
mild conditions, it can be shown that SY|X exists; see
Ref 14 for details.

The DR model is a very general formula-
tion and covers a wide range of parametric and
semi-parametric models. For example, if Y is a dis-
crete variable taking values in {1, 2, · · ·, K}, the DR
model covers classification models. Let PSY|XX be the
projection operator from ℝp to SY|X. When X satisfies
some mild conditions, such as the so-called linearity
condition, i.e., E

(
𝛽X|PSY|XX

)
is linear in PSY|XX, the

(𝛽1, · · ·, 𝛽d) in model (2) can be obtained by recursively
maximizing

L (𝜂) = max
T

corr2 (T (Y) , 𝜂𝜏X) , (3)

subject to the constraint that 𝛽 i var (X)𝛽 j = I{i= j},
where I{·} is the indicator function, 𝜂 ∈ℝp and T are
any possible transformations of Y including non-
monotone ones.18,19 In general, the L(𝜂) reflects the
largest possible squared correlation between a trans-
formed response T(Y) and the projection 𝜂𝜏X. At the
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population level,18 showed that L(𝜂) has an explicit
form

L (𝜂) =
𝜂𝜏var [E (X|Y)] 𝜂

𝜂𝜏var (X) 𝜂
= 𝜂𝜏M𝜂

𝜂𝜏ΣX𝜂
, (4)

where M
Δ
= var [E (X|Y)] and ΣX

Δ
= var (X). Therefore,

𝛽1, · · ·, 𝛽d are the eigenvectors of Σ−1
X M corresponding

to the largest d eigenvalues.
Based on the definition of M, a computation-

ally stable and fast procedure called sliced inverse
regression (SIR) was proposed in Ref 16 to generate
an estimate of M, which is further used to gener-
ate an estimate of PSY|X . Observing {(xi, yi)}i= 1,… ,n,
where xi ∈ℝp, the SIR algorithm is described as
follows: (1) Divide the range of {yi}i=1,… ,n into
several disjoint intervals I1, · · ·, IH; (2) Estimate
E (X|Y ∈ Ih), var (X) and M by their sample version
xh = 1

nh

∑n
i=1 xiI{yi∈Ih}, Σ̂X = 1

n

∑n
i=1

(
xi − x

) (
xi − x

)′
and M̂ = 1

n

∑H
h=1 nh

(
xi − x

) (
xi − x

)′
respectively,

where I{yi∈Ih} equals to 1 if yi ∈ Ih and 0 otherwise
and nh =

∑n
i=1 I{yi∈Ih}; (3) Apply the spectral decom-

position to Σ̂−1
X M̂ to obtain its eigenvalue-eigenvector

pairs
(
𝜆i, 𝛽i

)
where 𝜆1 ≤ · · · ≤ 𝜆d. The 𝛽i is the SIR

estimate of 𝛽 i and is referred to as the ith SIR direc-
tion. Empirical studies demonstrate that SIR is fairly
successful in achieving dimension reduction for the
high dimensional regression. The properties and
asymptotic behaviors of SIR have been well studied
in the literature, see Refs 20 and 21 among others.

Tensor DR and Central Tensor Dimension
Reduction Set
When observation is a second or higher order tensor,
we consider a tensor dimension reduction regression
(TDR) model. To avoid the notation confusion, in the
rest of the artical, we assume X ∈ ℝp1×p2×···×pm to be
a mth-order tensor and vec(X) to be the vectorized X.
Let 𝛾j = 𝛽

(1)
j ⊗ 𝛽

(2)
j ⊗ · · ·⊗ 𝛽

(m)
j be the kronecker prod-

uct of vector 𝛽(1)j , · · · , 𝛽(m)
j where 𝛽(i)j ∈ ℝpi . Then, given

the tensor predictor X ∈ ℝp1×… ,pm and the response
Y ∈ℝ, the TDR model is of the form

Y = g
(
𝛾𝜏1vec (X) , · · · , 𝛾𝜏Dvec (X) , 𝜀

)
, (5)

where g is an unknown function, 𝛾 j for j=1, · · ·, D
are regression indexes, and 𝜀 is a random error
that is independent of vec(X). Clearly, TDR model
assumes that Y is independent of vec(X) given(
𝛾𝜏1vec (X) , … , 𝛾𝜏Dvec (X)

)
. Let S be the linear

space spanned by {𝛾1, … , 𝛾D}. With a little abuse

of notation, we use S to denote the tensor dimension
reduction space.

It is worth noting that not all the elements
in S can be written in the form of a Kronecker
product of vectors. For example, 𝛽

(1)
1 ⊗ 𝛽

(2)
1 + 𝛽

(1)
2 ⊗

𝛽
(2)
2 ∈ S but cannot be expressed in a Kronecker

product of any vectors in S1 and S2, unless 𝛽
(1)
1 = 𝛽

(1)
2

or 𝛽
(2)
1 = 𝛽

(2)
2 . To keep the tensor structure and the

interpretability of the indexes in model (5), we borrow
the concept of decomposable tensor. A vector 𝛾 is said
to be mth-order decomposable if it can be written
in the form of 𝜂1 ⊗𝜂2 ⊗ · · ·⊗𝜂m, where 𝜂i ∈ ℝpi for
i= 1, … , m. Let 𝕊 be the set that consists of all the
decomposable tensors in S. It is easy to show that 𝕊
exists and is unique if S exists and is unique. From
now on, we define 𝕊 as the tensor dimension reduction
set (TDRS) and the intersection of all 𝕊 that satisfy
model (5) as the central tensor dimension reduction
set (CTDRS). The rank of the CTDRS is referred to as
the central dimension of regressing Y on X.

We also want to emphasize that model (5) is
substantially different from model (2), although they
look similar in expression. First, the TDR model can
naturally alleviate the curse of dimensionality without
increasing the estimation bias. For example, assuming
d= 1, the index 𝛽1 in model (2) with vec(X) has p1p2
parameters, while 𝛾1 in model (5) has only p1 +p2
parameters. Second, the indexes in the TDR model are
not necessarily the basis of the central subspace that is
defined in (1) because of the decomposable constraint
that we require on the indexes.

It is also important to know that model (5)
is significantly different from the dimension folding
model,4 which assumes

Y⊥vec (X) |PS1
⊗ PS2

⊗ · · ·⊗ PSm
vec (X) , (6)

where Si is the di dimensional sufficient dimension
reduction space of ℝpi and PSi

for i=1, · · ·, m are
projection operator from ℝpi to Si in a standard inner
product. Let S1 ⊗ · · ·⊗ Sm be the space that spanned
by {v1 ⊗ … ⊗ vm|∀ vj ∈ Sj}. Then S1 ⊗ · · ·⊗ Sm is
referred to as the dimension folding subspace in Ref
4 and central tensor subspace in Ref 5. It’s easy to
see that S in model (5) is in general much smaller
than S1 ⊗ · · ·⊗ Sm, i.e., S ⊆ S1 ⊗ · · ·⊗ Sm. For
example, for model Y = g

(
𝛾𝜏1vec (X) , 𝛾𝜏2vec (X) , 𝜀

)
,

where 𝛾1 = 𝛽
(1)
1 ⊗ 𝛽

(2)
1 and 𝛾2 = 𝛽

(1)
2 ⊗ 𝛽

(2)
2 , S is

the space spanned by 𝛾1 and 𝛾2, while the cen-
tral dimension folding subspace is spanned by(
𝛽
(1)
1 ⊗ 𝛽

(2)
1 , 𝛽

(1)
1 ⊗ 𝛽

(2)
2 , 𝛽

(1)
2 ⊗ 𝛽

(2)
1 , 𝛽

(1)
2 ⊗ 𝛽

(2)
2

)
. Thus,

model (5) can significantly improve the dimension
folding model in terms of the downstream statistical
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analysis, such as estimating the unknown function
form g. Moreover, in order to obtain an initial estimate
of S1 ⊗ · · ·⊗ Sm, dimension folding needs to estimate
the inverse of var (vec(X)), which may not be estimable
if the sample size is fairly small. This complication
can be bypassed by using our sequential iterative
dimension reduction algorithm provided below.

Sequential Iterative Dimension Reduction
Algorithm
From now on, we focus on the estimate of the 𝛾 j,
1≤ j≤D while leaving g unspecified. Let ℛ be the
set of all the mth-order decomposable tensors in
ℝp1 ⊗ · · ·⊗ℝpm . With a little abuse of notation, we
let L(𝜂)=maxT corr2(T(Y), 𝜂𝜏vec(X)). Then, similar to
model (2),

𝛾1 = argmax
𝜂∈ℛ

L (𝜂) , (7)

= argmax
𝜂∈ℛ

𝜂𝜏 var
[
E (vec (X) |Y)

]
𝜂

𝜂𝜏 var (vec (X)) 𝜂
. (8)

Comparing (8) to (4), we may naturally attempt
the optimization of (8) using the tensor spectral
decomposition as what we did for the vector predic-
tors. However, tensor spectral decomposition, such
as the PARAFAC22 or Tucker model,23,24 unlike its
vector sibling, cannot provide us the maximizer of
L(𝜂). Beyond this, the definition and algorithm of the
tensor spectral decomposition are far from mature
and have many intrinsic problems. For example, the
orthogonality on each mode is not assumed and
decomposition on the same mode is not unique using
different algorithms.2,25 Thus, we are keen on an alter-
native proposal as follows. To ease the presentation,
we assume m=2 in this session.

Recall that vec(X) is the vectorization of X,
where X ∈ ℝp2×p1 , and for any 𝜂 ∈ℛ, we have
𝜂𝜏vec (X) =

(
𝛽
(2)𝜏

1 X𝛽
(1)
1

)
, where 𝛽(j)1 ∈ ℝpj for j= 1 and

2. Maximizing (8) is equivalent to maximizing

L
(
𝛽
(1)
1 , 𝛽

(2)
1

)
=

var
[
E
(
𝛽
(2)𝜏

1 X𝛽
(1)
1 |Y)]

var
(
𝛽
(2)𝜏

1 X𝛽
(1)
1

) , (9)

with respect to 𝛽
(1)
1 and 𝛽

(2)
1 . Practically, the maximizer

of (9) can be obtained by iteratively maximizing the
following two functions

L1 (𝜂) =
𝜂𝜏var

[
E
(

X𝜏𝛽
(2)
1 |Y)]

𝜂

𝜂𝜏var
(

X𝜏𝛽
(2)
1

)
𝜂

, (10)

for given 𝛽
(2)
1 and,

L2 (𝜂) =
𝜂𝜏var

[
E
(

X𝛽
(1)
1 |Y)]

𝜂

𝜂𝜏var
(

X𝛽
(1)
1

)
𝜂

, (11)

for given 𝛽
(1)
1 respectively.

Observing {(Xi, yi)}i= 1,… ,n, where Xi ∈ ℝp1×p2 ,

we can estimate var
(

X𝜏𝛽
(2)
1

)
, var

(
X𝛽

(1)
1

)
,

var
[

E
(

X𝜏𝛽
(2)
1 |Y)]

and var
[

E
(

X𝛽
(1)
1 |Y)]

by their

sample version in the following way. Let z(1)i = X𝜏
i 𝛽

(1)
1 ,

z(2)i = Xi𝛽
(2)
1 , and divide the range of {yi}i= 1,… ,n

into several disjoint intervals I1, · · ·, IH. Calculate
z(j)

h
= 1

nh

∑n
i=1 z(j)i I{yi∈Ih} for j= 1, 2. Then, the sample

version of var (z(j)) and var (E(z(j)|Y)) can be esti-

mated by Σ̂j =
1
n

∑n
i=1

(
z(j)i − z(j)

)(
z(j)i − z(j)

)′
and

M̂j =
1
n

∑H
i=1 nh

(
z(j)i − z(j)

)(
z(j)i − z(j)

)′
for j=1, 2.

Notice that equation (11) is a quadratic form
on the vector space ℝp2 . Thus, if 𝛽

(1)
1 is given, 𝛽

(2)
1

can be obtained by SIR, and vise versa. Thus 𝛾1 can
be obtained by iteratively maximize (10) and (11)
respectively. Notice that Lj(·) for j= 1, 2 are bounded
above by one and the iterative maximization approach
ensures the nondecreasing of L(·) in each iteration.
Thus the convergence of iteration is guaranteed.

More generally, given Bk = (𝛾1, · · ·, 𝛾k),
we can estimate 𝛾k+ 1 in a sequential way. Let

Pk = Σ
1
2

vec(X)Bk

(
B𝜏

k
Σvec(X)Bk

)−1
B𝜏

k
Σ

1
2

vec(X) be the pro-
jection matrix from ℝp2 ⊗ℝp1 onto the space that is
spanned by Bk, say SBk

, with respect to Σvec(X), where
Σvec(X) is defined as var (vec(X)). Let vec(X(k)) be the
projection of vec(X) in the complementary space of
SBk

, i.e., vec(X(k))= (I−Pk)vec(X). Let ℛk denote the
set of all decomposable tensors of ℝp2 ⊗ℝp1 that are
orthogonal to SBk

. Then we have

− 𝛾k+1 = argmax
𝜂∈ℛk

𝜂𝜏 var
[

E
(

vec
(

X(k)
) |Y)]

𝜂

𝜂𝜏 var(vec
(

X(k)
)
𝜂

. (12)

The observation of vec(X(k)) can be obtained by
(I−Pk)vec(X)i. Clearly, 𝛾k+1 can be estimated in the
same fashion as 𝛾1. For given D, the SIDRA algorithm
is summarized in the flowchart in Figure 1. In general,
D can be determined by a 𝜒2 test. The details of this
test are beyond the scope of this paper.

CASE STUDY

Rapid and accurate detection of pathogenic bacteria is
important not only for containing its potential spread,
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Initialize βk
(1), begin

with k=1

Update Xi by Xi
(k), i =

1, ..., n

βk
(1) = argmaxη

Estimate βk(2)

No, let k=k+1 Yes

No
Yes

Converge?

k=D?

Output

ηM1η

ηΣ1η

βk
(1) = argmaxη

Estimate βk(1)

ηM2η

ηΣ2η

·

·

FIGURE 1 | The flowchart of SIDRA algorithm.

but also for determining potential medical remedies.
Existing bacterial identification methods are severely
limited by the necessity of long culturing times, the
need for highly trained laboratory personnel, and
the requirement of expensive and high-maintenance
equipment. There is a pressing need for a simple
but powerful technology for pathogenic bacterial
detection and identification. Motivated by the fact
that human pathogenic bacteria can be discriminated
from the volatile metabolites (VMs) they produce, we
have invented a chemical sensor: colorimetric sensor
arrays (CSA).

CSA is essentially a chemically engineered chip
with 36 chemo-responsive dyes printed in a 6×6
array, where each dye is essentially a ‘litmus paper’
that can change color when interacting with certain
chemical volatile. The composite color difference
of the 36 dyes measured before and after exposure
to a certain volatile can be recorded as a multiway
array and will serve as the volatile’s unique fin-
gerprint. Plotted in Figure 2 are the chemo images

for ten pathogenic bacteria collected using the CSA
technology.

A bacterial color difference map can be digi-
talized as a 36×3 matrix (2nd-order tensor), where
each row represents the color change of one of the
36 chemo-responsive dyes and each column represents
its color coordinates on the RGB axis of a color cube
respectively. In our preliminary studies, the color dif-
ference maps of 150 pathogenic bacteria from 10 bac-
terial species and 14 bacteria from one control species
have been collected every 30 min using CSA technol-
ogy with a time range from 120 to 600 min. For each
bacterium, a 36×3× 16 array is generated with the
first dimension being the dye effect, second dimension
being the RGB-color effect and the third dimension
being the time effect. Because, the change of color for
the same VMs is not continuous as the time increases,
we treat the time effect as a multivariate vector rather
than a continuous variable.

Plotted in Figure 3(a) is the projection of the 164
color difference maps on the first and second direc-
tions obtained using SIDRA method. Though, some of
the bacteria such as E. nterococcusaecalis and Entero-
coccus faecium cannot be clearly separated using two
directions, most bacteria can be well separated. To fur-
ther evaluate the accuracy of our algorithm in image
recognition, we separate the data by randomly sam-
pling one difference map from each class to form the
testing sample and use the rest difference maps to form
the training sample. SIDRA is applied to the training
data and the misclassification error is calculated using
the testing data. The procedure is repeated 50 times.
In Figure 3(b), we plot the average prediction error of
the testing set along with different number of direc-
tions. The prediction error rate is 2.55% with four
directions and below 1% with 7 or more directions.
We also find that including more than seven directions

S. aureus S. aureus
MRSA

S. epidermidis S. sciuri P. aeruginosa

E. faecium E. faecalis E. faecalis E. coli 25922 E. coli 53502

FIGURE 2 | Digital images of 10 pathogenic bacteria at full vapor pressure at 300 K.
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FIGURE 3 | Plotted in the left panel is the projection of 150 pathogenic bacteria on the first two dimension reduction directions. In the right panel,
we compare the prediction error of SIR-450 min (blue line), SIDRA-450 min (green line) using data collected 450 min after exposing colorimetric sensor
array (CSA) to the bacteria and SIDRA_ALL (red line) using all the time points from 120 min to 600 min, where measurement was taken every 30 min.

does not increase the prediction accuracy significantly,
which implies that the 164 bacteria can be separated in
a seven dimensional subspace. Our preliminary stud-
ies on 10 strains of bacteria, including E. faecalis and
Staphylococcus aureus and their antibiotic resistant
forms, demonstrate that CSA can clearly discriminate
the 10 strains with 98.8% accuracy within 10 h, a clin-
ically important timeframe.

This study supports our hypothesis that the
bacteria produce VMs that can be well detected using
CSA. It is worth noting that existing vector-based
discriminant analysis is not applicable for this data
if we consider all the time points, because the data
has a severe p≫n problem (36 dyes×3RGB-color×17
time points=1836 parameters ≫ sample size 164).
To compare SIR and SIDRA method in bacterial
detection, we compute the misclassification error of
SIR and SIDRA only at the 450-min. It is easy to
see that MDA consistently outperform SIR for all low
dimensional projections.

The initial studies reported herein are being used
to guide development of arrays with greater sensitiv-
ity and classification capabilities for bacteria. These

arrays are currently being applied to blood culture sys-
tems using liquid growth media with very low initial
inoculum concentrations. In addition, we are apply-
ing the same technology for rapid diagnosis of fungal
infections, which too has become increasingly impor-
tant biomedically, as the recent debacle over spinal
injectable steroids has demonstrated.

DISCUSSION

Like all the iterative estimation approaches, the
SIDRA procedure proposed in this article may
encounter issues typical to all the other iterative
estimation approaches. One major limitation of the
iterative estimation approach is that the estimate may
practically be attracted to a local optimal estimate
and fail to reach the global optimal estimate. To solve
this issue, we advocate trying multiple starting points
for iteration and choosing the best estimate. The
advantage of this approach is currently under investi-
gation and the simulation results will be reported in
the future publication.
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