The Art of Heterogeneous Catalytic Hydrogenation Part 2

Applications

by Bill Boulanger Adjunct Professor, Department of Chemistry University of Illinois at Urbana-Champaign wboulang@illinois.edu

Topics to be covered

Applications of Heterogeneous Catalytic Reductions Simple Reductions **Differential reductions** hydrogenolysis Equipment Tour of the High Pressure Lab

Recommended Books:

Heterogeneous Catalysis for the Synthetic Chemist Robert L Augustine (1996) Good for theory, kinetics, applications & Equipment Practical Catalytic Hydrogenation, **Techniques and Applications** Morris Freifelder 1971 Alchemic secrets of success

Recommended References

Catalytic Hydrogenation over Platinum Metals

• P. N. Rylander 1967

Factors That Impact Reduction Choices

Functional group reduced

Local structure

Presence of other reducible groups

Products that act as inhibitors/poisons

Desirability of hydrogenolysis as one of the actions

Equipment limitations

Olefins

Under mild conditions, ease of reduction *can be* correlated inversely with degree of substitution (except when conjugated) RHC=CH2 , RHC=CHR > R₂C=CHR > R₂C=CR₂

Many different catalysts reduce double bonds. The key to differentiating reduction of double bonds is monitoring equivalents hydrogen consumed.

Olefins continued

 Bond migrations prior to reduction are common and may result in scrambling of nearby stereochemistry (Requires H₂!)
Certain groups act as directors

Bond Migration: More with Ni, Pd, less with Pt

Catalyst approach: OH blocks Pd but favors Ni

Hydrogen Addition is from the Least Hindered Side

Selective Reduction of Polyenes

Pd and Ni often cause bond migration
Greatly influenced by local structure
Conjugated di- and polyenes give mixtures except in special cases

Catalyst Addition is in Equilibrium

Effect of Solvent and Pressure on Stereochemistry

Alkyne Reduction

Usual catalysts: Lindlar's (Pd/CaCO₃) Pd/BaSO4, Nickel boride, Cu and Co.

- Selectivity for cis reduction: Pd >Rh >Pt > Ru> Ir
- > Quinoline commonly used as a modifier.

Reduction of Alkynes: a Game of Relative Rate

Alkyne Reduction

Aromatic Reduction

- Catalyst Activity: Rh > Ru > Pt > Ni > Pd > Co
- Ru minimizes C-O and C-N hydrogenolysis.
- C-Halide bonds do not survive aromatic reductions

Correct choice of conditions allows other functionalities to survive

Aromatic Reduction

Phenols to Cyclohexanones: thin film on catalyst modifies products

Ring Differentiation in Aromatic Reduction

Ring Differentiation in Aromatic Reduction

Ring Differentiation in Aromatic Reduction

Other Aromatic Reductions

Other Aromatic Reductions

Dicyclohexylamine

Heterocyclic Reductions

Some Functional Group Reductions: faster than Aromatic

- Takes advantage of relative ease of imine reduction.
- Takes advantage of equilibrium between imine and ketone in presence of an amine.
- Some aldehydes produce significant byproducts of diamine and polymers.
- Use of one eq. acid improves yield of primary amine

- Raney Nickel is the catalyst of choice
- Palladium, Rhodium and Platinum do not perform as well as RaNi
- Ruthenium on carbon has been used successfully
- Use of 1 eq. ammonium acetate or HOAc significantly improves results
- Aromatic Halides have been reported to survive conditions (using Rhodium)
- Can be done on sensitive aromatics, like furan.

Hydrogenolysis

Reductive cleavage of sigma bonds:
C-C, C-N, C-O, C-S and others
Choice of catalyst, structure of substrate, and solvent greatly influence whether double bond reduction continues on to hydrogenolysis.

Carbon-Carbon Hydrogenolysis

Halogen Weakens Opposite bond

C-O Hydrogenolysis

- Generally benzyl alcohols, ethers and esters
- Often facilitated by acid
- Frequently occurs in competition with aromatic ring reduction
- Palladium favors hydrogenolysis while platinum favors ring reduction.

C-O Hydrogenolysis

Contrasting Pt with Pd

C-O Hydrogenolysis

C-O Hydrogenolysis

Carbonyl Hydrogenolysis

C-N Hydrogenolysis

C-N Hydrogenolysis

Parr Shaker Demo and HP Lab Tour

Hydrogenolysis: Carbon-Carbon

