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Topics to be covered 

Applications of Heterogeneous Catalytic 

Reductions 

Simple Reductions 

Differential reductions 

hydrogenolysis 

Equipment 

Tour of the High Pressure Lab 



Recommended Books: 

Heterogeneous Catalysis for the Synthetic 

Chemist       

Robert L Augustine  (1996) 

Good for theory, kinetics, applications & 

Equipment 

Practical Catalytic Hydrogenation, 

Techniques and Applications 

Morris Freifelder  1971 

Alchemic secrets of success 



Recommended References 

 Catalytic Hydrogenation over Platinum 

Metals   

 P. N. Rylander 1967 



Factors That Impact Reduction 

Choices 

Functional group reduced 

Local structure 

Presence of other reducible groups 

Products that act as inhibitors/poisons 

Desirability of hydrogenolysis as one of the 

actions 

Equipment limitations 

 

 

 

 



Olefins 

Under mild conditions, ease of reduction can be 

correlated inversely with degree of substitution 

(except when conjugated) 

RHC=CH2 , RHC=CHR > R2C=CHR > R2C=CR2 

 

Many different catalysts reduce double bonds. 

The key to differentiating reduction of double 

bonds is monitoring equivalents hydrogen 

consumed. 



Olefins continued 

 Bond migrations prior to reduction are 

common and may result in scrambling of 

nearby stereochemistry (Requires H2!) 

 Certain groups act as directors 



Bond Migration: More with Ni, Pd, 

less with Pt 
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Access to catalyst surface 

influences stereochemistry 
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Catalyst approach: OH blocks Pd 

but favors Ni 

H3C

Pd

Ni

HO
H

Pd/H2

Ni/H2

H

H3C

CH3

H

H

OH

H

OH

76%

87%



Hydrogen Addition is from the 

Least Hindered Side 
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Selective Reduction of Polyenes 

 Pd and Ni often cause bond migration 

 Greatly influenced by local structure 

 Conjugated di- and polyenes give mixtures 

except in special cases 
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Effect of Solvent and Pressure on 

Stereochemistry 

OO O

H

H

H

H

+

 Solvent    Percent cis Product 

    Low H2 Press   High H2 Press 

 n-Hexane   77    48 

 DMF    86    75 

 tert-Butyl Alcohol  91    48 

 Ethanol   78    48 

 0.3 N HCl/Ethanol  91    80 

 0.3 N NaOH   50    50  



Alkyne Reduction 

 

 Usual catalysts:  Lindlar’s (Pd/CaCO3) 

Pd/BaSO4, Nickel boride, Cu and Co.  

 Selectivity for cis reduction: Pd >Rh >Pt > 

Ru> Ir 

 Quinoline commonly used as a modifier. 



Reduction of Alkynes: a Game of 

Relative Rate 
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Alkyne Reduction 
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Aromatic Reduction 

 Catalyst Activity:  Rh > Ru > Pt > Ni > Pd 

> Co 

 Ru minimizes C-O and C-N 

hydrogenolysis. 

 C-Halide bonds do not survive aromatic 

reductions 

 Correct choice of conditions allows other 

functionalities to survive 



Aromatic Reduction 
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Phenols to Cyclohexanones: thin 

film on catalyst modifies products 
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Ring Differentiation in Aromatic 

Reduction 
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Ring Differentiation in Aromatic 

Reduction 
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Ring Differentiation in Aromatic 

Reduction 
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Other Aromatic Reductions 
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Other Aromatic Reductions 
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Heterocyclic Reductions 
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Some Functional Group 

Reductions: faster than Aromatic 
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Reductive Amination 

R R'

O
+ NH3

R R'

OH
NH2

R R'

N
H

R R'

NH2

H

R' = H or R



Reductive Amination 

 Takes advantage of relative ease of imine 

reduction. 

 Takes advantage of equilibrium between 

imine and ketone in presence of an amine. 

 Some aldehydes produce significant 

byproducts of diamine and polymers. 

 Use of one eq. acid improves yield of 

primary amine 



Reductive Amination 

 Raney Nickel is the catalyst of choice 

 Palladium, Rhodium and Platinum do not 
perform as well as RaNi 

 Ruthenium on carbon has been used 
successfully 

 Use of 1 eq. ammonium acetate or HOAc 
significantly improves results 

 Aromatic Halides have been reported to survive 
conditions (using Rhodium) 

 Can be done on sensitive aromatics, like furan. 



Reductive Amination 
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Reductive Amination 
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Hydrogenolysis 

 Reductive cleavage of sigma bonds: 

 C-C, C-N, C-O, C-S and others 

 Choice of catalyst, structure of substrate, 

and solvent greatly influence whether 

double bond reduction continues on to 

hydrogenolysis. 



Carbon-Carbon Hydrogenolysis 
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Carbon-Carbon Hydrogenolysis 
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Halogen Weakens Opposite bond 
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C-O Hydrogenolysis 

 Generally benzyl alcohols, ethers and 

esters 

 Often facilitated by acid 

 Frequently occurs in competition with 

aromatic ring reduction 

 Palladium favors hydrogenolysis while 

platinum favors ring reduction. 



C-O Hydrogenolysis 
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Contrasting Pt with Pd 
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C-O Hydrogenolysis 
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C-O Hydrogenolysis 
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Carbonyl Hydrogenolysis 
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C-N Hydrogenolysis 
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C-N Hydrogenolysis 

NO2

H3CO

OH

N

NO2

H3CO

OH

Pd/BaSO4 EtOH
RT 2 Atm

69%



Parr Shaker Demo and 

HP Lab Tour 

  



Hydrogenolysis: Carbon-Carbon 
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